We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Effects of contact compressive force on bracket bond strength and adhesive thickness

Study using orthodontic resins with different viscosities

Auswirkungen der Kontaktdruckkraft auf Bracket-Verbindungsfestigkeit und Adhäsivdicke

Studie mit kieferorthopädischen Kunststoffen unterschiedlicher Viskositäten

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

To assess the effect of the contact compressive force to seat orthodontic brackets on shear bond strength (SBS) and adhesive thickness using adhesive resins with different viscosities.

Methods

A total of 184 premolars were divided equally into eight groups of 23. Transbond XT and Beauty Ortho Bond paste viscous self-etching adhesive systems were used with contact compressive forces of 0.5, 1, 2, and 3 N (groups 1–4 and groups 5–8, respectively) via a push–pull tension gauge. SBS and adhesive thickness were measured in each adhesive system for each contact compressive force.

Results

Significant differences existed in the SBSs between the adhesive systems for each contact compressive force and the SBSs were significantly higher in groups 1 (17 MPa) and 2 (16 MPa) than in groups 3 (14 MPa) and 4 (13 MPa). Significant differences existed for the adhesive thickness between the adhesive systems for the three contact compressive forces less than 3 N. The adhesive in group 1 (0.184 mm) was significantly thicker than that in groups 2–4 (from 0.098 to 0.129 mm). In groups 2 (0.129 mm) and 3 (0.121 mm) it was thicker than in group 4 (0.098 mm), and in group 5 (0.119 mm) it was thicker than in groups 6–8 (from 0.087 to 0.088 mm).

Conclusions

The high-viscosity adhesive Transbond XT exhibited higher SBSs than the low-viscosity Beauty Ortho Bond paste. For the adhesive Transbond XT, lower contact compressive forces produced greater adhesive thicknesses and higher SBSs. For the Beauty Ortho Bond paste, no significant changes in the adhesive thickness or SBS values were observed for contact compressive forces greater than 0.5 N.

Zusammenfassung

Zielsetzung

Beurteilt werden sollte der Einfluss der Kontaktdruckkraft beim Aufbringen kieferorthopädischer Brackets auf die Scherhaftfestigkeit (SBS) und die Adhäsivdicke bei der Verwendung von Klebstoffen mit unterschiedlichen Viskositäten.

Methoden

Insgesamt 184 Prämolaren wurden zu gleichen Teilen in 8 Gruppen von 23 Prämolaren aufgeteilt. Die viskösen selbstätzenden Adhäsivsysteme Transbond XT und Beauty Ortho Bond wurden mit Kontaktdruckkräften von 0,5, 1, 2 und 3 N (Gruppen 1–4 bzw. 5–8) über ein Push-pull-Zugkraft-Messgerät eingesetzt. SBS-Werte und Adhäsivdicken wurden in jedem System für jede Kontaktdruckkraft gemessen.

Ergebnisse

Es bestanden signifikante Unterschiede in der SBS zwischen den Adhäsivsystemen für jede Kontaktdruckkraft, die SBS war in den Gruppen 1 (17 MPa) und 2 (16 MPa) signifikant höher als in den Gruppen 3 (14 MPa) und 4 (13 MPa). Deutliche Unterschiede zwischen den Systemen gab es bei der Adhäsivdicke für die 3 Kontaktdruckkräfte unter 3 N. Die Dicke des Adhäsivs in Gruppe 1 (0,184 mm) war signifikant höher als in den Gruppen 2‑4 (0,098–0,129 mm), und in den Gruppen 2 (0,129 mm) und 3 (0,121 mm) war sie höher als in Gruppe 4 (0,09 mm), in Gruppe 5 (0,119 mm) war sie höher als in den Gruppen 6–8 (0,087–0,088 mm).

Schlussfolgerungen

Das hochviskose Adhäsiv Transbond XT wies höhere SBS-Werte auf als das niedrigviskose Beauty Ortho Bond. Bei Transbond XT führten geringere Kontaktdruckkräfte zu höheren Adhäsivdicken und höherer SBS. Für Beauty Ortho Bond wurden keine signifikanten Veränderungen der Adhäsivdicke oder SBS-Werte bei Kontaktdruckkräften von mehr als 0,5 N beobachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  1. Albaladejo A, Montero J, Gómez de Diego R, López-Valverde A (2011) Effect of adhesive application prior to bracket bonding with flowable composites. Angle Orthod 81(4):716–720

    Article  Google Scholar 

  2. Ansari MY, Agarwal DK, Gupta A, Bhattacharya P, Ansar J, Bhandari R (2016) Shear bond strength of ceramic brackets with different base designs: comparative in-vitro study. J Clin Diagn Res 10(11):ZC64–ZC68

    PubMed  PubMed Central  Google Scholar 

  3. Arici S, Caniklioglu CM, Arici N, Ozer M, Oguz B (2005) Adhesive thickness effects on the bond strength of light-cured resin-modified glass ionomer cement. Angle Orthod 75(2):254–259

    PubMed  Google Scholar 

  4. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85(4):333–340

    Article  Google Scholar 

  5. Bishara SE, Ostby AW, Laffoon JF, Warren J (2007) Shear bond strength comparison of two adhesive systems following thermocycling. Angle Orthod 77(2):337–341

    Article  Google Scholar 

  6. Buyuk SK, Kucukekenci AS (2018) Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials. Angle Orthod 88(2):221–226

    Article  Google Scholar 

  7. DIN Deutsches Institut für Normung e. V (2017) DIN 13990:2017-04, dentistry—test methods for shear bond strength of adhesives for orthodontic attachments

    Google Scholar 

  8. Daratsianos N, Schütz B, Reimann S, Weber A, Papageorgiou SN, Jäger A et al (2019) The influence of enamel sandblasting on the shear bond strength and fractography of the bracket-adhesive-enamel complex tested in vitro by the DIN 13990:2017-04 standard. Clin Oral Investig 23(7):2975–2985

    Article  Google Scholar 

  9. Di Guida LA, Benetti P, Corazza PH, Della Bona A (2019) The critical bond strength of orthodontic brackets bonded to dental glass-ceramics. Clin Oral Invest. https://doi.org/10.1007/s00784-019-02881-5

    Article  Google Scholar 

  10. Elsaka SE (2016) Influence of surface treatments on bond strength of metal and ceramic brackets to a novel CAD/CAM hybrid ceramic material. Odontology 104(1):68–76

    Article  Google Scholar 

  11. Endo T, Ozoe R, Shinkai K, Aoyagi M, Kurokawa H, Katoh Y et al (2009) Shear bond strength of brackets rebonded with a fluoride-releasing and -recharging adhesive system. Angle Orthod 79(3):564–570

    Article  Google Scholar 

  12. Evans LB, Powers JM (1985) Factors affecting in vitro bond strength of no-mix orthodontic cements. Am J Orthod 87(6):508–512

    Article  Google Scholar 

  13. Faltermeier A, Rosentritt M, Faltermeier R, Reicheneder C, Müssig D (2007) Influence of filler level on the bond strength of orthodontic adhesives. Angle Orthod 77(3):494–498

    Article  Google Scholar 

  14. Farzanegan F, Zebarjad SM, Alizadeh S, Ahrari F (2012) Pain reduction after initial archwire placement in orthodontic patients: a randomized clinical trial. Am J Orthod Dentofacial Orthop 141(2):169–173

    Article  Google Scholar 

  15. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  Google Scholar 

  16. Fleming PS, Al-Moghrabi D, Fudalej P, Pandis N (2018) Orthodontic pain: the use of non-pharmacological adjuncts and its effect on compliance. Semin Orthod 24(2):248–258

    Article  Google Scholar 

  17. Hama T, Namura Y, Nishio Y, Yoneyama T, Shimizu N (2014) Effect of orthodontic adhesive thickness on force required by debonding pliers. J Oral Sci 56(3):185–190

    Article  Google Scholar 

  18. Harari D, Aunni E, Gillis I, Redlich M (2000) A new multipurpose dental adhesive for orthodontic use: an in vitro bond-strength study. Am J Orthod Dentofacial Orthop 118(3):307–310

    Article  Google Scholar 

  19. Hioki M, Shin-Ya A, Nakahara R, Vallittu PK, Nakasone Y, Shin-Ya A (2007) Shear bond strength and FEM of a resin-modified glass ionomer cement—effects of tooth enamel shape and orthodontic bracket base configuration. Dent Mater J 26(5):700–707

    Article  Google Scholar 

  20. Itoh T, Fukushima T, Inoue Y, Arita S, Miyazaki K (1999) Effect of water, saliva and blood contamination on bonding of metal brackets with a 4-META/MMA/TBB resin to etched enamel. Am J Dent 12(6):299–304

    PubMed  Google Scholar 

  21. Jain M, Shetty S, Mogra S, Shetty VS, Dhakar N (2013) Determination of optimum adhesive thickness using varying degrees of force application with light-cured adhesive and its effect on the shear bond strength of orthodontic brackets: an in vitro study. Orthodontics 14(1):e40–e49

    PubMed  Google Scholar 

  22. Katona TR (1994) The effects of load location and misalignment on shear/peel testing of direct bonded orthodontic brackets—a finite element model. Am J Orthod Dentofacial Orthop 106(4):395–402

    Article  Google Scholar 

  23. Klocke A, Kahl-Nieke B (2006) Effect of debonding force direction on orthodontic shear bond strength. Am J Orthod Dentofacial Orthop 129(2):261–265

    Article  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  Google Scholar 

  25. Lavernhe P, Estivalèzes E, Lachaud F, Lodter C, Piquet R (2010) Orthodontic bonding: finite element for standardized evaluations. Int J Adhes Adhes 30(1):21–29

    Article  Google Scholar 

  26. Li J (2011) Effect of flexural strength of orthodontic resin cement on bond strength of metal brackets to enamel surfaces. Eur J Orthod 33(2):167–173

    Article  Google Scholar 

  27. MacColl GA, Rossouw PE, Titley KC, Yamin C (1998) The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofacial Orthop 113(3):276–281

    Article  Google Scholar 

  28. Mackay F (1992) The effect of adhesive type and thickness on bond strength of orthodontic brackets. Br J Orthod 19(1):35–39

    Article  Google Scholar 

  29. Mohammadi A, Pourkhameneh S, Sadrhaghighi AH (2018) The effect of different force magnitudes for placement of orthodontic brackets on shear bond strength, in three adhesive systems. J Clin Exp Dent 10(6):e548–e554

    PubMed  PubMed Central  Google Scholar 

  30. Muguruma T, Yasuda Y, Iijima M, Kohda N, Mizoguchi I (2010) Force and amount of resin composite paste used in direct and indirect bonding. Angle Orthod 80(6):1089–1094

    Article  Google Scholar 

  31. O’Brien KD, Watts DC, Read MJ (1988) Residual debris and bond strength: is there a relationship? Am J Orthod Dentofacial Orthop 94(3):222–230

    Article  Google Scholar 

  32. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2(3):171–178

    Article  Google Scholar 

  33. Ryou DB, Park HS, Kim KH, Kwon TY (2008) Use of flowable composites for orthodontic bracket bonding. Angle Orthod 78(6):1105–1109

    Article  Google Scholar 

  34. Sha HN, Choi SH, Yu HS, Hwang CJ, Cha JY, Kim KM (2018) Debonding force and shear bond strength of an array of CAD/CAM-based customized orthodontic brackets, placed by indirect bonding—an in vitro study. PLoS ONE 13(9):e202952

    Article  Google Scholar 

  35. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D’Attilio M (2005) A new one-step dental flowable composite for orthodontic use: an in vitro bond strength study. Angle Orthod 75(4):672–677

    PubMed  Google Scholar 

  36. Thomasa RL, de Rijk WG, Evans CA (1999) Tensile and shear stresses in the orthodontic attachment adhesive layer with 3D finite element analysis. Am J Orthod Dentofacial Orthop 116(5):530–532

    Article  Google Scholar 

  37. Tomiyama K, Mukai Y, Teranaka T (2008) Acid resistance induced by a new orthodontic bonding system in vitro. Dent Mater J 27(4):590–597

    Article  Google Scholar 

  38. Zope A, Zope-Khalekar Y, Chitko SS, Kerudi VV, Patil HA, Bonde PV et al (2016) Comparison of self-etch primers with conventional acid etching system on orthodontic brackets. J Clin Diagn Res 10(12):ZC19–ZC22

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from Shofu Inc. (Kyoto, Japan) for research. However, the funder was not involved in study design, collection, statistical analysis, interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Goto.

Ethics declarations

Conflict of interest

S. Goto, Y. Hasegawa, Y. Miyagawa and T. Endo declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. Ethical approval for this study was granted by The Nippon Dental University School of Life Dentistry at Niigata (ECNG-R301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, S., Hasegawa, Y., Miyagawa, Y. et al. Effects of contact compressive force on bracket bond strength and adhesive thickness. J Orofac Orthop 81, 79–88 (2020). https://doi.org/10.1007/s00056-019-00202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00202-9

Keywords

Schlüsselwörter

Navigation