Skip to main content
Log in

Thermal imaging of the pulp during residual adhesive removal

Thermographie in der Pulpa während der Entfernung von Adhäsivresten

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the temperature changes of the pulpal area during different adhesive clean-up procedures.

Materials and methods

A total of 80 freshly extracted adult maxillary premolar teeth were divided into four groups. Adhesive clean-up was performed with 6- and 12-fluted tungsten carbide burs (TCB) using low- and high-speed handpieces with air or water cooling after bracket debonding. The temperature changes and cool down times were evaluated with a thermal camera. Paired t test, analysis of variance (ANOVA), and Student–Newman–Keuls multiple comparison analysis were used for statistical analysis of the data.

Results

All experimental groups, except the water cooling group, showed a significant temperature rise (p < 0.001) after residual adhesive removal. Only the 6-fluted TCB group with air cooling using a high-speed handpiece exceeded the critical 5.5 °C threshold value (5.91 ± 0.89 °C); this group also exhibited the longest cool down time to initial temperature (71.95 ± 13.68 s). The smallest temperature rise (0.48 ± 0.90 °C) and shortest cooling time value (11.90 ± 5.3 s) were measured in the 6-fluted TCB group with water cooling using a high-speed handpiece.

Conclusion

Appropriate cooling procedures and fine tungsten carbide burs should be used during the removal of remnant adhesives after bracket debonding in order to prevent adverse pulpal reactions.

Zusammenfassung

Zielsetzung

Ziel der Studie war die Evaluierung von Temperaturveränderungen im Bereich der Pulpa während unterschiedlicher Verfahren für die Entfernung von Adhäsivresten.

Material und Methoden

80 frisch extrahierte Oberkieferprämolaren von Erwachsenen wurden in 4 Gruppen eingeteilt. Nach dem Bracket-Debonding wurde das Adhäsiv mittels Hartmetallfinierern (tungsten carbide burs, TCB) mit 6 bzw. 12 Schneiden an Hoch- bzw. Niedergeschwindigkeitshandstücken und bei Luft- oder Wasserkühlung entfernt. Temperaturänderungen und Abkühlzeiten wurden mit einer Thermokamera evaluiert. Zur statistischen Datenanalyse wurden gepaarter t-Test, ANOVA (analysis of variance) und der Student–Newman–Keuls-Test verwendet.

Ergebnisse

Mit Ausnahme der Versuchsgruppe, in der Wasserkühlung verwendet wurde, zeigte sich in allen Gruppen ein signifikanter Temperaturanstieg (p < 0,001) nach Entfernung der Adhäsivreste. Nur in einer Gruppe (6-Schneiden-TCB, Luftkühlung, Hochgeschwindigkeitshandstück) wurde mit 5,91 ± 0,89 °C der kritische 5,5 °C-Schwellenwert überschritten, in dieser Gruppe waren auch die Zeiten bis zur Abkühlung auf die Ausgangstemperatur am längsten (71,95 ± 13,68 s). Der geringste Temperaturanstieg (0,48 ± 0,90 °C) und die schnellste Abkühlung (11,90 ± 5,3 s) zeigten sich in der Versuchsgruppe mit 6-TCB, Wasserkühlung und Hochgeschwindigkeitshandstück.

Schlussfolgerung

Während der Entfernung von Adhäsivresten nach Bracket-Debonding sind zur Prävention unerwünschter Reaktionen im Bereich der Pulpa geeignete Kühlverfahren und feine Hartmetallfinierer einzusetzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS (2004) Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent 32:35–40

    Article  PubMed  Google Scholar 

  2. Baldissara P, Capatano S, Scotti R (1997) Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 24:791–801

    Article  PubMed  Google Scholar 

  3. Campbell PM (1995) Enamel surfaces after orthodontic bracket debonding. Angle Orthod 65:103–110

    PubMed  Google Scholar 

  4. Cardoso LAM, Valdrighi HC, Vedovello Filho M, Correr AB (2014) Effect of adhesive remnant removal on enamel topography after bracket debonding. Dent Press J Orthod 19:105–112

    Article  Google Scholar 

  5. Cummings M, Biagioni P, Lamey PJ, Burden DJ (1999) Thermal image analysis of electrothermal debonding of ceramic brackets: an in vitro study. Eur J Orthod 21:111–118

    Article  PubMed  Google Scholar 

  6. Eminkahyagil N, Arman A, Çetinşahin A, Karabulut E (2006) Effect of resin-removal methods on enamel and shear bond strength of rebonded brackets. Angle Orthod 76:314–321

    PubMed  Google Scholar 

  7. Jonke E, Weiland F, Freudenthaler JW, Bantleon HP (2006) Heat generated by residual adhesive removal after debonding of brackets. World J Orthod 7:357–360

    PubMed  Google Scholar 

  8. Jost-Brinkmann PG, Stein H, Miethke RR, Nakata M (1992) Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets. Am J Orthod Dentofac Orthop 102:410–417

    Article  Google Scholar 

  9. Kilic K, Er O, Kilinc HI, Aslan T, Bendes E, Sekerci AE, Aslantas V (2013) Infrared thermographic comparison of temperature increases on the root surface during dowel space preparations using circular versus oval fiber dowel systems. J Prosthodont 22:203–207

    Article  PubMed  Google Scholar 

  10. Kwon SJ, Park YJ, Jun SH, Ahn JS, Lee IB, Cho BH, Son HH, Seo DG (2013) Thermal irritation of teeth during dental treatment procedures. Restor Dent Endo 38:105–112

    Article  Google Scholar 

  11. Langeland K (1959) Histologic evaluation of pulp reactions to operative procedures. Oral Surg Oral Med Oral Pathol 12:1235–1248

    Article  PubMed  Google Scholar 

  12. Malkoç S, Uysal T, Üşümez S, Işman E, Baysal A (2010) In-vitro assessment of temperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofac Orthop 137:379–383

    Article  Google Scholar 

  13. Mank S, Steineck M, Brauchli L (2011) Influence of various polishing methods on pulp temperature: an in vitro study. J Orofac Orthop 72:348–357

    Article  PubMed  Google Scholar 

  14. Mollica FB, Camargo FP, Zamboni CS, Pereira SMB, Teixeira SC, Junior LN (2008) Pulpal temperature increase with high-speed handpiece, Er: YAG laser and ultrasound tips. J Appl Oral Sci 16:209–213

    Article  PubMed  PubMed Central  Google Scholar 

  15. Retief DH, Denys FR (1979) Finishing of enamel surface after debonding of orthodontic attachments. Angle Orthod 49:1–10

    PubMed  Google Scholar 

  16. Rouleau BD Jr, Marshall GW Jr, Cooley RO (1982) Enamel surface evaluations after clinical treatment and removal of orthodontic brackets. Am J Orthod 81:423–426

    Article  PubMed  Google Scholar 

  17. Tonetto MR, Frizzera F, Porto TS, Jordão KF, de Andrade MF, dos Santos RS, Klug RJ, Bandeca MC (2014) Methods for removal of resin remaining after debonding of orthodontic brackets: a literature review. J Dent Res Rev 1:105–117

    Article  Google Scholar 

  18. Uysal T, Unverdi Eldeniz A, Usumez S, Usumez A (2005) Thermal changes in the pulp different adhesive clean-up procedures. Angle Orthod 75:220–225

    PubMed  Google Scholar 

  19. Van Waes H, Matter T, Krejci I (1997) Three-dimensional measurement of enamel loss caused by bonding and debonding of orthodontic brackets. Am J Orthod Dentofac Orthop 112:666–669

    Article  Google Scholar 

  20. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  Google Scholar 

  21. Zachrisson BU, Årtun J (1979) Enamel surface appearance after various debonding techniques. Am J Orthod 75:121–137

    Article  PubMed  Google Scholar 

  22. Zarrinnia K, Eid NM, Kehoe MJ (1995) The effect of different debonding techniques on the enamel surface: an in vitro qualitative study. Am J Orthod Dentofacial Orthop 108:284–293

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökmen Kurt.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

G. Kurt, N. Gül, Ö. Er, G. Çakmak, E. Bendeş, and V. Aslantaş declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, G., Gül, N., Er, Ö. et al. Thermal imaging of the pulp during residual adhesive removal. J Orofac Orthop 78, 330–337 (2017). https://doi.org/10.1007/s00056-017-0089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-017-0089-x

Keywords

Schlüsselwörter

Navigation