Skip to main content

Advertisement

Log in

Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-β peptide (Aβ) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer’s disease (AD) defers Aβ accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP et al (2021) Current concepts in intracranial interstitial fluid transport and the glymphatic system: part II-imaging techniques and clinical applications. Radiology 301:516–532. https://doi.org/10.1148/radiol.2021204088

    Article  PubMed  Google Scholar 

  2. Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G (2021) Clearance systems in the brain, from structure to function. Front Cell Neurosci 15:729706. https://doi.org/10.3389/fncel.2021.729706

    Article  CAS  PubMed  Google Scholar 

  3. Yankova G, Bogomyakova O, Tulupov A (2021) The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci 32:693–705. https://doi.org/10.1515/revneuro-2020-0106

    Article  CAS  PubMed  Google Scholar 

  4. Gordleeva S, Kanakov O, Ivanchenko M, Zaikin A, Franceschi C (2020) Brain aging and garbage cleaning : modelling the role of sleep, glymphatic system, and microglia senescence in the propagation of inflammaging. Semin Immunopathol 42:647–665. https://doi.org/10.1007/s00281-020-00816-x

    Article  PubMed  Google Scholar 

  5. Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Toger J, Markenroth Bloch K et al (2021) Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 41:2137–2149. https://doi.org/10.1177/0271678X20982388

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 261:H1197-1204. https://doi.org/10.1152/ajpheart.1991.261.4.H1197

    Article  CAS  PubMed  Google Scholar 

  7. Benveniste H, Lee H, Ozturk B, Chen X, Koundal S, Vaska P et al (2021) Glymphatic cerebrospinal fluid and solute transport quantified by MRI and PET imaging. Neuroscience 474:63–79. https://doi.org/10.1016/j.neuroscience.2020.11.014

    Article  CAS  PubMed  Google Scholar 

  8. Potter GM, Chappell FM, Morris Z, Wardlaw JM (2015) Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 39:224–231. https://doi.org/10.1159/000375153

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hladky SB, Barrand MA (2022) The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19:9. https://doi.org/10.1186/s12987-021-00282-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hedlund L, Lischko MM, Rollag MD, Niswender GD (1977) Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 195:686–687. https://doi.org/10.1126/science.841305

    Article  CAS  PubMed  Google Scholar 

  11. Reppert SM, Coleman RJ, Heath HW, Keutmann HT (1982) Circadian properties of vasopressin and melatonin rhythms in cat cerebrospinal fluid. Am J Physiol 243:E489-498. https://doi.org/10.1152/ajpendo.1982.243.6.E489

    Article  CAS  PubMed  Google Scholar 

  12. Skinner DC, Malpaux B (1999) High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405. https://doi.org/10.1210/endo.140.10.7074

    Article  CAS  PubMed  Google Scholar 

  13. Bitar RD, Torres-Garza JL, Reiter RJ, Phillips WT (2021) Neural glymphatic system: clinical implications and potential importance of melatonin. Melatonin Res 4:551–565. https://doi.org/10.32794/mr112500111

    Article  Google Scholar 

  14. Reiter RJ, Sharma R, Rosales-Corral S, de Mange J, Phillips WT, Tan DX et al (2022) Melatonin in ventricular and subarachnoid cerebrospinal fluid: its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 605:70–81. https://doi.org/10.1016/j.bbrc.2022.03.025

    Article  CAS  PubMed  Google Scholar 

  15. Hardeland R (2015) Melatonin and circadian oscillators in aging–a dynamic approach to the multiply connected players. Interdiscip Top Gerontol 40:128–140. https://doi.org/10.1159/000364975

    Article  PubMed  Google Scholar 

  16. Perez-Lloret S, Cardinali DP (2021) Melatonin as a chronobiotic and cytoprotective agent in Parkinson’s disease. Front Pharmacol 12:650597. https://doi.org/10.3389/fphar.2021.650597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spector R, Robert Snodgrass S, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68. https://doi.org/10.1016/j.expneurol.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  18. Quintela T, Goncalves I, Silva M, Duarte AC, Guedes P, Andrade K et al (2018) Choroid plexus is an additional source of melatonin in the brain. J Pineal Res 65:e12528. https://doi.org/10.1111/jpi.12528

    Article  CAS  PubMed  Google Scholar 

  19. Tan DX, Manchester LC, Reiter RJ (2016) CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med Hypotheses 86:3–9. https://doi.org/10.1016/j.mehy.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  20. Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970. https://doi.org/10.1016/j.neuroscience.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  21. Tricoire H, Locatelli A, Chemineau P, Malpaux B (2002) Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 143:84–90. https://doi.org/10.1210/endo.143.1.8585

    Article  CAS  PubMed  Google Scholar 

  22. Mestre H, Mori Y, Nedergaard M (2020) The Brain’s glymphatic system: current controversies. Trends Neurosci 43:458–466. https://doi.org/10.1016/j.tins.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lewis LD (2021) The interconnected causes and consequences of sleep in the brain. Science 374:564–568. https://doi.org/10.1126/science.abi8375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaughan GM, Pelham RW, Pang SF, Loughlin LL, Wilson KM, Sandock KL et al (1976) Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. J Clin Endocrinol Metab 42:752–764. https://doi.org/10.1210/jcem-42-4-752

    Article  CAS  PubMed  Google Scholar 

  25. Korf HW (2018) Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 258:236–243. https://doi.org/10.1016/j.ygcen.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  26. Wehr TA (1991) The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab 73:1276–1280. https://doi.org/10.1210/jcem-73-6-1276

    Article  CAS  PubMed  Google Scholar 

  27. Hull JT, Czeisler CA, Lockley SW (2018) Suppression of melatonin secretion in totally visually blind people by ocular exposure to white light: clinical characteristics. Ophthalmology 125:1160–1171. https://doi.org/10.1016/j.ophtha.2018.01.036

    Article  PubMed  Google Scholar 

  28. Skene DJ, Arendt J (2007) Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med 8:651–655. https://doi.org/10.1016/j.sleep.2006.11.013

    Article  PubMed  Google Scholar 

  29. Barboni MTS, Bueno C, Nagy BV, Maia PL, Vidal KSM, Alves RC et al (2018) Melanopsin system dysfunction in Smith-Magenis syndrome patients. Invest Ophthalmol Vis Sci 59:362–369. https://doi.org/10.1167/iovs.17-22612

    Article  CAS  PubMed  Google Scholar 

  30. Potocki L, Glaze D, Tan DX, Park SS, Kashork CD, Shaffer LG et al (2000) Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J Med Genet 37:428–433. https://doi.org/10.1136/jmg.37.6.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lockley SW, Arendt J, Skene DJ (2007) Visual impairment and circadian rhythm disorders. Dialogues Clin Neurosci 9:301–314

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kanematsu N, Mori Y, Hayashi S, Hoshino K (1989) Presence of a distinct 24-hour melatonin rhythm in the ventricular cerebrospinal fluid of the goat. J Pineal Res 7:143–152. https://doi.org/10.1111/j.1600-079x.1989.tb00662.x

    Article  CAS  PubMed  Google Scholar 

  33. Leston J, Harthe C, Mottolese C, Mertens P, Sindou M, Claustrat B (2015) Is pineal melatonin released in the third ventricle in humans? A study in movement disorders. Neurochirurgie 61:85–89. https://doi.org/10.1016/j.neuchi.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  34. Legros C, Chesneau D, Boutin JA, Barc C, Malpaux B (2014) Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. J Neuroendocrinol 26:151–163. https://doi.org/10.1111/jne.12134

    Article  CAS  PubMed  Google Scholar 

  35. Reiter RJ, Tan DX, Kim SJ, Cruz MH (2014) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct Funct 219:1873–1887. https://doi.org/10.1007/s00429-014-0719-7

    Article  CAS  PubMed  Google Scholar 

  36. Bruce J, Tamarkin L, Riedel C, Markey S, Oldfield E (1991) Sequential cerebrospinal fluid and plasma sampling in humans: 24-hour melatonin measurements in normal subjects and after peripheral sympathectomy. J Clin Endocrinol Metab 72:819–823. https://doi.org/10.1210/jcem-72-4-819

    Article  CAS  PubMed  Google Scholar 

  37. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309. https://doi.org/10.1172/JCI67677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tricoire H, Malpaux B, Moller M (2003) Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. J Comp Neurol 456:39–47. https://doi.org/10.1002/cne.10477

    Article  PubMed  Google Scholar 

  39. Moore RY, Rapport RL (1971) Pineal and gonadal function in the rat following cervical sympathectomy. Neuroendocrinology 7:361–374. https://doi.org/10.1159/000121983

    Article  CAS  PubMed  Google Scholar 

  40. Reiter RJ, Hester RJ (1966) Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology 79:1168–1170. https://doi.org/10.1210/endo-79-6-1168

    Article  CAS  PubMed  Google Scholar 

  41. Acuna-Castroviejo D, Escames G, Venegas C, Diaz-Casado ME, Lima-Cabello E, Lopez LC et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025. https://doi.org/10.1007/s00018-014-1579-2

    Article  CAS  PubMed  Google Scholar 

  42. Loh D, Reiter RJ (2021) Melatonin: regulation of biomolecular condensates in neurodegenerative disorders. Antioxidants (Basel). https://doi.org/10.3390/antiox10091483

    Article  PubMed  Google Scholar 

  43. Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden L et al (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19:111–115. https://doi.org/10.1111/j.1600-079x.1995.tb00178.x

    Article  CAS  PubMed  Google Scholar 

  44. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Xia Z, Sheng P, Rui Y, Cao J, Zhang J et al (2022) Targeting MicroRNA-144/451-AKT-GSK3beta axis affects the proliferation and differentiation of radial glial cells in the mouse hippocampal dentate gyrus. ACS Chem Neurosci 13:897–909. https://doi.org/10.1021/acschemneuro.1c00636

    Article  CAS  PubMed  Google Scholar 

  46. Shi C, Zeng J, Li Z, Chen Q, Hang W, Xia L et al (2018) Melatonin mitigates kainic acid-induced neuronal tau hyperphosphorylation and memory deficits through alleviating ER stress. Front Mol Neurosci 11:5. https://doi.org/10.3389/fnmol.2018.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Chen X, Zhao Y, Ponnusamy M, Liu Y (2017) The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci 28:861–868. https://doi.org/10.1515/revneuro-2017-0013

    Article  CAS  PubMed  Google Scholar 

  48. Chinchalongporn V, Shukla M, Govitrapong P (2018) Melatonin ameliorates Abeta42 -induced alteration of betaAPP-processing secretases via the melatonin receptor through the Pin1/GSK3beta/NF-kappaB pathway in SH-SY5Y cells. J Pineal Res 64:e12470. https://doi.org/10.1111/jpi.12470

    Article  CAS  PubMed  Google Scholar 

  49. Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D et al (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108. https://doi.org/10.1046/j.1471-4159.2003.01654.x

    Article  CAS  PubMed  Google Scholar 

  50. Rathnasamy G, Ling EA, Kaur C (2014) Therapeutic implications of melatonin in cerebral edema. Histol Histopathol 29:1525–1538. https://doi.org/10.14670/HH-29.1525

    Article  CAS  PubMed  Google Scholar 

  51. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. https://doi.org/10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  52. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR et al (2019) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366:628–631. https://doi.org/10.1126/science.aax5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE et al (2019) The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363:880–884. https://doi.org/10.1126/science.aav2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW et al (2018) Beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115:4483–4488. https://doi.org/10.1073/pnas.1721694115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hablitz LM, Vinitsky HS, Sun Q, Staeger FF, Sigurdsson B, Mortensen KN et al (2019) Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 5:eaav5447. https://doi.org/10.1126/sciadv.aav5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mateo C, Knutsen PM, Tsai PS, Shih AY, Kleinfeld D (2017) Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96:936-948e933. https://doi.org/10.1016/j.neuron.2017.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP et al (2020) Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105:549-561e545. https://doi.org/10.1016/j.neuron.2019.10.033

    Article  CAS  PubMed  Google Scholar 

  59. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolkove N, Elkholy O, Baltzan M, Palayew M (2007) Sleep and aging: 1. Sleep disorders commonly found in older people. CMAJ 176:1299–1304. https://doi.org/10.1503/cmaj.060792

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reiter RJ, Richardson BA, Johnson LY, Ferguson BN, Dinh DT (1980) Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science 210:1372–1373. https://doi.org/10.1126/science.7434032

    Article  CAS  PubMed  Google Scholar 

  62. Sack RL, Lewy AJ, Erb DL, Vollmer WM, Singer CM (1986) Human melatonin production decreases with age. J Pineal Res 3:379–388. https://doi.org/10.1111/j.1600-079x.1986.tb00760.x

    Article  CAS  PubMed  Google Scholar 

  63. Grigg-Damberger M, Foldvary-Schaefer N (2022) Sleep biomarkers help predict the development of Alzheimer disease. J Clin Neurophysiol. https://doi.org/10.1097/WNP.0000000000000818

    Article  PubMed  Google Scholar 

  64. Nous A, Engelborghs S, Smolders I (2021) Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimers Res Ther 13:52. https://doi.org/10.1186/s13195-021-00788-6

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152. https://doi.org/10.1111/j.1600-079X.2004.00196.x

    Article  CAS  PubMed  Google Scholar 

  66. Chen D, Zhang T, Lee TH (2020) Cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules. https://doi.org/10.3390/biom10081158

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15:1010–1031. https://doi.org/10.2174/1570159X15666170313123454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardinali DP (2021) Melatonin and healthy aging. Vitam Horm 115:67–88. https://doi.org/10.1016/bs.vh.2020.12.004

    Article  PubMed  Google Scholar 

  69. Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M (1999) Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry 45:417–421. https://doi.org/10.1016/s0006-3223(97)00510-6

    Article  CAS  PubMed  Google Scholar 

  70. Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pevet P, Ravid D et al (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174. https://doi.org/10.1016/0006-8993(90)90214-v

    Article  CAS  PubMed  Google Scholar 

  71. He H, Dong W, Huang F (2010) Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol 8:211–217. https://doi.org/10.2174/157015910792246137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84:323–327. https://doi.org/10.1210/jcem.84.1.5394

    Article  CAS  PubMed  Google Scholar 

  73. Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, Van Kan HJ et al (2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 88:5898–5906. https://doi.org/10.1210/jc.2003-030833

    Article  CAS  PubMed  Google Scholar 

  74. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257. https://doi.org/10.1111/jpi.12010

    Article  CAS  PubMed  Google Scholar 

  75. Bromme HJ, Ebelt H, Peschke D, Peschke E (1999) Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin. Cell Mol Life Sci 55:487–493. https://doi.org/10.1007/s000180050305

    Article  CAS  PubMed  Google Scholar 

  76. Hardeland R (2021) Melatonin, its metabolites and their interference with reactive nitrogen compounds. Molecules. https://doi.org/10.3390/molecules26134105

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tan D-X, Chen LD, Poeggeler B, Manchester LC, Reiter R (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  78. Agapito MT, Redondo I, Plaza R, Lopez-Burillo S, Recio JM, Pablos MI (1999) Relationships between melatonin, glutathione peroxidase, glutathione reductase, and catalase. Endogenous rhythms on cerebral cortex in Gallus domesticus. Adv Exp Med Biol 460:377–381

    Article  CAS  PubMed  Google Scholar 

  79. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ et al (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 74:3989–3998. https://doi.org/10.1007/s00018-017-2618-6

    Article  CAS  PubMed  Google Scholar 

  80. Ikram M, Park HY, Ali T, Kim MO (2021) Melatonin as a potential regulator of oxidative stress, and neuroinflammation: mechanisms and implications for the management of brain injury-induced neurodegeneration. J Inflamm Res 14:6251–6264. https://doi.org/10.2147/JIR.S334423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mukherjee R, Desai F, Singh S, Gajaria T, Singh PK, Baxi DB et al (2010) Melatonin protects against alterations in hippocampal cholinergic system, trace metals and oxidative stress induced by gestational and lactational exposure to cadmium. Excli J 9:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Salman M, Kaushik P, Tabassum H, Parvez S (2021) melatonin provides neuroprotection following traumatic brain injury-promoted mitochondrial perturbation in Wistar rat. Cell Mol Neurobiol 41:765–781. https://doi.org/10.1007/s10571-020-00884-5

    Article  CAS  PubMed  Google Scholar 

  83. Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L (2021) Effect of melatonin on endoplasmic reticulum-mitochondrial crosstalk in stroke. Arch Med Res 52:673–682. https://doi.org/10.1016/j.arcmed.2021.04.002

    Article  CAS  PubMed  Google Scholar 

  84. Reiter RJ, Ma Q, Sharma R (2020) Melatonin in mitochondria: mitigating clear and present dangers. Physiology (Bethesda) 35:86–95. https://doi.org/10.1152/physiol.00034.2019

    Article  CAS  PubMed  Google Scholar 

  85. Ebanks B, Chakrabarti L (2022) Mitochondrial ATP synthase is a target of oxidative stress in neurodegenerative diseases. Front Mol Biosci 9:854321. https://doi.org/10.3389/fmolb.2022.854321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lahiri DK (1999) Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res 26:137–146. https://doi.org/10.1111/j.1600-079x.1999.tb00575.x

    Article  CAS  PubMed  Google Scholar 

  87. Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M et al (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 273:7185–7188. https://doi.org/10.1074/jbc.273.13.7185

    Article  CAS  PubMed  Google Scholar 

  88. Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, Reiter RJ et al (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 17:1683–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J et al (2000) An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm (Vienna) 107:203–231. https://doi.org/10.1007/s007020050018

    Article  CAS  PubMed  Google Scholar 

  90. Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M et al (2002) The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res 32:135–142. https://doi.org/10.1034/j.1600-079x.2002.1o838.x

    Article  CAS  PubMed  Google Scholar 

  91. Pappolla MA, Matsubara E, Vidal R, Pacheco-Quinto J, Poeggeler B, Zagorski M et al (2018) Melatonin treatment enhances abeta lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 15:637–642. https://doi.org/10.2174/1567205015666180411092551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 3:e3321. https://doi.org/10.1371/journal.pone.0003321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kozhevnikova OS, Korbolina EE, Stefanova NA, Muraleva NA, Orlov YL, Kolosova NG (2013) Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats. Biogerontology 14:753–762. https://doi.org/10.1007/s10522-013-9439-2

    Article  CAS  PubMed  Google Scholar 

  94. Rudnitskaya EA, Maksimova KY, Muraleva NA, Logvinov SV, Yanshole LV, Kolosova NG et al (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease. Biogerontology 16:303–316. https://doi.org/10.1007/s10522-014-9547-7

    Article  CAS  PubMed  Google Scholar 

  95. Scholtens RM, van Munster BC, van Kempen MF, de Rooij SE (2016) Physiological melatonin levels in healthy older people: a systematic review. J Psychosom Res 86:20–27. https://doi.org/10.1016/j.jpsychores.2016.05.005

    Article  PubMed  Google Scholar 

  96. Hardeland R (2019) Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci. https://doi.org/10.3390/ijms20051223

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A (2020) Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets 24:359–378. https://doi.org/10.1080/14728222.2020.1737015

    Article  CAS  PubMed  Google Scholar 

  98. Chen C, Yang C, Wang J, Huang X, Yu H, Li S et al (2021) Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res 71:e12774. https://doi.org/10.1111/jpi.12774

    Article  CAS  PubMed  Google Scholar 

  99. Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS et al (2020) Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer’s disease. Ann N Y Acad Sci 1478:43–62. https://doi.org/10.1111/nyas.14436

    Article  CAS  PubMed  Google Scholar 

  100. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McClean C, Davison GW (2022) Circadian clocks, redox homeostasis, and exercise: time to connect the dots? Antioxidants (Basel). https://doi.org/10.3390/antiox11020256

    Article  PubMed  Google Scholar 

  102. Gilley RR (2022) The role of sleep in cognitive function: the value of a good night’s rest. Clin EEG Neurosci. https://doi.org/10.1177/15500594221090067

    Article  PubMed  Google Scholar 

  103. Poeggeler B (2005) Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine 27:201–212. https://doi.org/10.1385/ENDO:27:2:201

    Article  CAS  PubMed  Google Scholar 

  104. Li L, Ding G, Zhang L, Davoodi-Bojd E, Chopp M, Li Q et al (2022) Aging-related alterations of glymphatic transport in rat: in vivo magnetic resonance imaging and kinetic study. Front Aging Neurosci 14:841798. https://doi.org/10.3389/fnagi.2022.841798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cardinali DP, Esquifino AI, Srinivasan V, Pandi-Perumal SR (2008) Melatonin and the immune system in aging. NeuroImmunoModulation 15:272–278. https://doi.org/10.1159/000156470

    Article  CAS  PubMed  Google Scholar 

  106. Prodhan A, Cavestro C, Kamal MA, Islam MA (2021) Melatonin and sleep disturbances in Alzheimer’s disease. CNS Neurol Disord Drug Targets 20:736–754. https://doi.org/10.2174/1871527320666210804155617

    Article  CAS  PubMed  Google Scholar 

  107. Novais AA, Chuffa LGA, Zuccari D, Reiter RJ (2021) Exosomes and melatonin: where their destinies intersect. Front Immunol 12:692022. https://doi.org/10.3389/fimmu.2021.692022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cho JH, Bhutani S, Kim CH, Irwin MR (2021) Anti-inflammatory effects of melatonin: a systematic review and meta-analysis of clinical trials. Brain Behav Immun 93:245–253. https://doi.org/10.1016/j.bbi.2021.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012) Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis 1:280–291

    PubMed  PubMed Central  Google Scholar 

  110. Chang YT, Chang WN, Tsai NW, Huang CC, Kung CT, Su YJ et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Biomed Res Int 2014:182303. https://doi.org/10.1155/2014/182303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu WC, Wang X, Zhang X, Chen X, Jin X (2017) Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci 9:165. https://doi.org/10.3389/fnagi.2017.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mukda S, Panmanee J, Boontem P, Govitrapong P (2016) Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neurosci Lett 621:39–46. https://doi.org/10.1016/j.neulet.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  113. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Y, Zhang J, Wan J, Liu A, Sun J (2020) Melatonin regulates Abeta production/clearance balance and Abeta neurotoxicity: a potential therapeutic molecule for Alzheimer’s disease. Biomed Pharmacother 132:110887. https://doi.org/10.1016/j.biopha.2020.110887

    Article  CAS  PubMed  Google Scholar 

  116. Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L (2022) AGE-TXNIP axis drives inflammation in Alzheimer’s by targeting Abeta to mitochondria in microglia. Cell Death Dis 13:302. https://doi.org/10.1038/s41419-022-04758-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3beta pathway in the mouse hippocampus. J Pineal Res 59:47–59. https://doi.org/10.1111/jpi.12238

    Article  CAS  PubMed  Google Scholar 

  119. Zhu L, Gong Y, Lju H, Sun G, Zhang Q, Qian Z (2021) Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3–R4 domains revealed by molecular dynamics simulation. Phys Chem Chem Phys 23:20615–20626. https://doi.org/10.1039/d1cp03142b

    Article  CAS  PubMed  Google Scholar 

  120. Oishi A, Gbahou F, Jockers R (2021) Melatonin receptors, brain functions, and therapies. Handb Clin Neurol 179:345–356. https://doi.org/10.1016/B978-0-12-819975-6.00022-4

    Article  PubMed  Google Scholar 

  121. Yao K, Zhao YF, Zu HB (2019) Melatonin receptor stimulation by agomelatine prevents Abeta-induced tau phosphorylation and oxidative damage in PC12 cells. Drug Des Devel Ther 13:387–396. https://doi.org/10.2147/DDDT.S182684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL et al (2022) Role of melatonin in Alzheimer’s disease: from preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 65:100986. https://doi.org/10.1016/j.yfrne.2022.100986

    Article  CAS  PubMed  Google Scholar 

  123. Wei Z, Li X, Li X, Liu Q, Cheng Y (2018) Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Front Mol Neurosci 11:236. https://doi.org/10.3389/fnmol.2018.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang Z, Bai Z, Qin X, Cheng Y (2019) Aberrations in oxidative stress markers in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Oxid Med Cell Longev 2019:1712323. https://doi.org/10.1155/2019/1712323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Trigo D, Avelar C, Fernandes M, Sa J, da Cruz ESO (2022) Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett. https://doi.org/10.1002/1873-3468.14298

    Article  PubMed  Google Scholar 

  126. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419. https://doi.org/10.1111/jpi.12267

    Article  CAS  PubMed  Google Scholar 

  127. Yildirim S, Ozkan A, Aytac G, Agar A, Tanriover G (2022) Role of melatonin in TLR4-mediated inflammatory pathway in the MTPT-induced mouse model. Neurotoxicology 88:168–177. https://doi.org/10.1016/j.neuro.2021.11.011

    Article  CAS  PubMed  Google Scholar 

  128. Khaldy H, Escames G, Leon J, Vives F, Luna JD, Acuna-Castroviejo D (2000) Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. J Pineal Res 29:100–107. https://doi.org/10.1034/j.1600-079x.2000.290206.x

    Article  CAS  PubMed  Google Scholar 

  129. Gitto E, Tan DX, Reiter RJ, Karbownik M, Manchester LC, Cuzzocrea S et al (2001) Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 53:1393–1401. https://doi.org/10.1211/0022357011777747

    Article  CAS  PubMed  Google Scholar 

  130. Brown GM, Young SN, Gauthier S, Tsui H, Grota LJ (1979) Melatonin in human cerebrospinal fluid in daytime; its origin and variation with age. Life Sci 25:929–936. https://doi.org/10.1016/0024-3205(79)90498-3

    Article  CAS  PubMed  Google Scholar 

  131. Benot S, Goberna R, Reiter RJ, Garcia-Maurino S, Osuna C, Guerrero JM (1999) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 27:59–64. https://doi.org/10.1111/j.1600-079x.1999.tb00597.x

    Article  CAS  PubMed  Google Scholar 

  132. McCleery J, Cohen DA, Sharpley AL (2016) Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst Rev 11:CD009178. https://doi.org/10.1002/14651858.CD009178.pub3

    Article  PubMed  Google Scholar 

  133. Jansen SL, Forbes D, Duncan V, Morgan DG, Malouf R (2006) Melatonin for the treatment of dementia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003802.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  134. Majidazar R, Rezazadeh-Gavgani E, Sadigh-Eteghad S, Naseri A (2022) Pharmacotherapy of Alzheimer’s disease: an overview of systematic reviews. Eur J Clin Pharmacol 78:1567–1587. https://doi.org/10.1007/s00228-022-03363-6

    Article  CAS  PubMed  Google Scholar 

  135. De Crescenzo F, D’Alo GL, Ostinelli EG, Ciabattini M, Di Franco V, Watanabe N et al (2022) Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: a systematic review and network meta-analysis. Lancet 400:170–184. https://doi.org/10.1016/S0140-6736(22)00878-9

    Article  PubMed  Google Scholar 

  136. Kim JH, Duffy JF (2018) Circadian rhythm sleep-wake disorders in older adults. Sleep Med Clin 13:39–50. https://doi.org/10.1016/j.jsmc.2017.09.004

    Article  PubMed  Google Scholar 

  137. Zhang B, Chen T, Cao M, Yuan C, Reiter RJ, Zhao Z et al (2022) Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer’s disease and obesity. Front Immunol 13:900132. https://doi.org/10.3389/fimmu.2022.900132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Coelho LA, Peres R, Amaral FG, Reiter RJ, Cipolla-Neto J (2015) Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 58:490–499. https://doi.org/10.1111/jpi.12234

    Article  CAS  PubMed  Google Scholar 

  139. Garcia-Rios A, Ordovas JM (2022) Chronodisruption and cardiovascular disease. Clin Investig Arterioscler. https://doi.org/10.1016/j.arteri.2021.12.004

    Article  PubMed  Google Scholar 

  140. Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y (2022) Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 15:21. https://doi.org/10.1186/s13045-022-01238-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349. https://doi.org/10.1002/cne.20970

    Article  PubMed  PubMed Central  Google Scholar 

  142. La Morgia C, Carelli V, Sadun AA (2021) Retina and melanopsin neurons. Handb Clin Neurol 179:315–329. https://doi.org/10.1016/B978-0-12-819975-6.00020-0

    Article  PubMed  Google Scholar 

  143. Contreras E, Nobleman AP, Robinson PR, Schmidt TM (2021) Melanopsin phototransduction: beyond canonical cascades. J Exp Biol. https://doi.org/10.1242/jeb.226522

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070. https://doi.org/10.1126/science.1069609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Esquiva G, Hannibal J (2019) Melanopsin-expressing retinal ganglion cells in aging and disease. Histol Histopathol 34:1299–1311. https://doi.org/10.14670/HH-18-138

    Article  CAS  PubMed  Google Scholar 

  146. Vartanian GV, Li BY, Chervenak AP, Walch OJ, Pack W, Ala-Laurila P et al (2015) Melatonin suppression by light in humans is more sensitive than previously reported. J Biol Rhythms 30:351–354. https://doi.org/10.1177/0748730415585413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Abe M, Kawaguchi H, Miura N, Akioka K, Ushikai M, Oi S et al (2018) Diurnal variation of melatonin concentration in the cerebrospinal fluid of unanesthetized microminipig. In Vivo 32:583–590. https://doi.org/10.21873/invivo.11279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664. https://doi.org/10.1007/BF01923947

    Article  CAS  PubMed  Google Scholar 

  149. Hardeland R (2013) Chronobiology of melatonin beyond the feedback to the suprachiasmatic nucleus-consequences to melatonin dysfunction. Int J Mol Sci 14:5817–5841. https://doi.org/10.3390/ijms14035817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Quera Salva MA, Hartley S (2012) Mood disorders, circadian rhythms, melatonin and melatonin agonists. J Cent Nerv Syst Dis 4:15–26. https://doi.org/10.4137/JCNSD.S4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526. https://doi.org/10.1038/35081582

    Article  CAS  PubMed  Google Scholar 

  152. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA (2014) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Updat 20:293–307. https://doi.org/10.1093/humupd/dmt054

    Article  CAS  Google Scholar 

  153. Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P et al (2019) MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res 67:e12575. https://doi.org/10.1111/jpi.12575

    Article  CAS  PubMed  Google Scholar 

  154. Pevet P (2016) Melatonin receptors as therapeutic targets in the suprachiasmatic nucleus. Expert Opin Ther Targets 20:1209–1218. https://doi.org/10.1080/14728222.2016.1179284

    Article  CAS  PubMed  Google Scholar 

  155. Waly NE, Hallworth R (2015) Circadian pattern of melatonin MT1 and MT2 receptor localization in the rat suprachiasmatic nucleus. J Circadian Rhythms 13:1. https://doi.org/10.5334/jcr.ab

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11. https://doi.org/10.1111/jpi.12189

    Article  CAS  PubMed  Google Scholar 

  157. Pevet P, Challet E, Felder-Schmittbuhl MP (2021) Melatonin and the circadian system: keys for health with a focus on sleep. Handb Clin Neurol 179:331–343. https://doi.org/10.1016/B978-0-12-819975-6.00021-2

    Article  PubMed  Google Scholar 

  158. Stehle JH, von Gall C, Korf HW (2002) Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation. Cell Tissue Res 309:173–182. https://doi.org/10.1007/s00441-002-0583-2

    Article  CAS  PubMed  Google Scholar 

  159. Rusak B, Yu GD (1993) Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: pinealectomy effects. Brain Res 602:200–204. https://doi.org/10.1016/0006-8993(93)90683-e

    Article  CAS  PubMed  Google Scholar 

  160. Torres-Farfan C, Mendez N, Abarzua-Catalan L, Vilches N, Valenzuela GJ, Seron-Ferre M (2011) A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 152:1891–1900. https://doi.org/10.1210/en.2010-1260

    Article  CAS  PubMed  Google Scholar 

  161. Robinson AG, Zimmerman EA (1973) Cerebrospinal fluid and ependymal neurophysin. J Clin Invest 52:1260–1267. https://doi.org/10.1172/JCI107293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rodriguez E, Guerra M, Peruzzo B, Blazquez JL (2019) Tanycytes: a rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 31:e12690. https://doi.org/10.1111/jne.12690

    Article  CAS  PubMed  Google Scholar 

  163. Cardinali DP, Brown GM, Pandi-Perumal SR (2021) Chronotherapy. Handb Clin Neurol 179:357–370. https://doi.org/10.1016/B978-0-12-819975-6.00023-6

    Article  PubMed  Google Scholar 

  164. Fernandez FX, Kaladchibachi S, Negelspach DC (2021) Resilience in the suprachiasmatic nucleus: implications for aging and Alzheimer’s disease. Exp Gerontol 147:111258. https://doi.org/10.1016/j.exger.2021.111258

    Article  PubMed  Google Scholar 

  165. Nassan M, Videnovic A (2022) Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 18:7–24. https://doi.org/10.1038/s41582-021-00577-7

    Article  CAS  PubMed  Google Scholar 

  166. Van Erum J, Van Dam D, De Deyn PP (2018) Sleep and Alzheimer’s disease: a pivotal role for the suprachiasmatic nucleus. Sleep Med Rev 40:17–27. https://doi.org/10.1016/j.smrv.2017.07.005

    Article  PubMed  Google Scholar 

  167. Tomasello U, Klingler E, Niquille M, Mule N, Santinha AJ, de Vevey L et al (2022) miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep 38:110381. https://doi.org/10.1016/j.celrep.2022.110381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang F, Xia Z, Sheng P, Ren Y, Liu J, Ding L et al (2022) Targeting the Erk1/2 and autophagy signaling easily improved the neurobalst differentiation and cognitive function after young transient forebrain ischemia compared to old gerbils. Cell Death Discov 8:87. https://doi.org/10.1038/s41420-022-00888-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hinojosa-Godinez A, Jave-Suarez LF, Flores-Soto M, Galvez-Contreras AY, Luquin S, Oregon-Romero E et al (2019) Melatonin modifies SOX2(+) cell proliferation in dentate gyrus and modulates SIRT1 and MECP2 in long-term sleep deprivation. Neural Regen Res 14:1787–1795. https://doi.org/10.4103/1673-5374.257537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sotthibundhu A, Ekthuwapranee K, Govitrapong P (2016) Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. Excli J 15:829–841. https://doi.org/10.17179/excli2016-606

    Article  PubMed  PubMed Central  Google Scholar 

  171. Arias-Carrion O, Drucker-Colin R (2007) Neurogenesis as a therapeutic strategy to regenerate central nervous system. Rev Neurol 45:739–745

    CAS  PubMed  Google Scholar 

  172. Arias-Carrion O, Freundlieb N, Oertel WH, Hoglinger GU (2007) Adult neurogenesis and Parkinson’s disease. CNS Neurol Disord Drug Targets 6:326–335. https://doi.org/10.2174/187152707783220875

    Article  CAS  PubMed  Google Scholar 

  173. Singhakumar R, Boontem P, Ekthuwapranee K, Sotthibundhu A, Mukda S, Chetsawang B et al (2015) Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: an in vivo study. Neurosci Lett 606:209–214. https://doi.org/10.1016/j.neulet.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  174. Mendivil-Perez M, Soto-Mercado V, Guerra-Librero A, Fernandez-Gil BI, Florido J, Shen YQ et al (2017) Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. https://doi.org/10.1111/jpi.12415

    Article  PubMed  Google Scholar 

  175. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E et al (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559. https://doi.org/10.1016/j.neuron.2014.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, Fischer-Sternjak J et al (2021) Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 184:709-722e713. https://doi.org/10.1016/j.cell.2020.12.026

    Article  CAS  PubMed  Google Scholar 

  177. Chu J, Tu Y, Chen J, Tan D, Liu X, Pi R (2016) Effects of melatonin and its analogues on neural stem cells. Mol Cell Endocrinol 420:169–179. https://doi.org/10.1016/j.mce.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  178. Anderson G (2020) The effects of melatonin on signaling pathways and molecules involved in glioma: melatonin and glioblastoma: pathophysiology and treatment. Fundam Clin Pharmacol 34:189–191. https://doi.org/10.1111/fcp.12538

    Article  CAS  PubMed  Google Scholar 

  179. Anderson G, Reiter RJ (2019) Glioblastoma: role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res 12:1178646919855942. https://doi.org/10.1177/1178646919855942

    Article  PubMed  PubMed Central  Google Scholar 

  180. Moretti E, Favero G, Rodella LF, Rezzani R (2020) Melatonin’s antineoplastic potential against glioblastoma. Cells. https://doi.org/10.3390/cells9030599

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yan Z, Zhang X, Hua L, Huang L (2022) Melatonin inhibits the malignant progression of glioblastoma via regulating miR-16-5p/PIM1. Curr Neurovasc Res. https://doi.org/10.2174/1567202619666220406084947

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kinker GS, Ostrowski LH, Ribeiro PAC, Chanoch R, Muxel SM, Tirosh I et al (2021) MT1 and MT2 melatonin receptors play opposite roles in brain cancer progression. J Mol Med (Berl) 99:289–301. https://doi.org/10.1007/s00109-020-02023-5

    Article  CAS  PubMed  Google Scholar 

  183. Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N et al (2022) The subventricular zone in glioblastoma: genesis, maintenance, and modeling. Front Oncol 12:790976. https://doi.org/10.3389/fonc.2022.790976

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ghareghani M, Zibara K, Rieter RJ, Rivest S (2022) Reduced melatonin levels may facilitate glioblastoma initiation in the subventricular zone. Expert Rev Mol Med. https://doi.org/10.1017/erm.2022.15

    Article  PubMed  Google Scholar 

  185. Samantaray S, Das A, Thakore NP, Matzelle DD, Reiter RJ, Ray SK et al (2009) Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res 47:134–142. https://doi.org/10.1111/j.1600-079X.2009.00703.x

    Article  CAS  PubMed  Google Scholar 

  186. Yang X, Chen J, Ma Y, Huang M, Qiu T, Bian H et al (2022) Function, mechanism, and application of plant melatonin: an update with a focus on the cereal crop, Barley (Hordeum vulgare L.). Antioxidants (Basel). https://doi.org/10.3390/antiox11040634

    Article  PubMed  PubMed Central  Google Scholar 

  187. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 114:E7997–E8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C et al (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x

    Article  CAS  PubMed  Google Scholar 

  189. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59:221–229. https://doi.org/10.1111/jpi.12252

    Article  CAS  PubMed  Google Scholar 

  190. Blackman J, Swirski M, Clynes J, Harding S, Leng Y, Coulthard E (2021) Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer’s disease: a systematic review. J Sleep Res 30:e13229. https://doi.org/10.1111/jsr.13229

    Article  PubMed  Google Scholar 

  191. Zetner D, Andersen LPK, Alder R, Jessen ML, Tolstrup A, Rosenberg J (2021) Pharmacokinetics and safety of intravenous, intravesical, rectal, transdermal, and vaginal melatonin in healthy female volunteers: a cross-over study. Pharmacology 106:169–176. https://doi.org/10.1159/000510252

    Article  CAS  PubMed  Google Scholar 

  192. Castillo RR, Quizon GRA, Junco MJM, Roman ADE, De Leon DG, Punzalan FER et al (2020) Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): a case series. Melatonin Res 3:297–310. https://doi.org/10.32794/mr11250063

    Article  Google Scholar 

  193. Nordlund JJ, Lerner AB (1977) The effects of oral melatonin on skin color and on the release of pituitary hormones. J Clin Endocrinol Metab 45:768–774. https://doi.org/10.1210/jcem-45-4-768

    Article  CAS  PubMed  Google Scholar 

  194. Nopparat C, Chaopae W, Boontem P, Sopha P, Wongchitrat P, Govitrapong P (2021) Melatonin attenuates high glucose-induced changes in beta amyloid precursor protein processing in human neuroblastoma cells. Neurochem Res. https://doi.org/10.1007/s11064-021-03290-5

    Article  PubMed  Google Scholar 

  195. Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ (2010) Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr Neuropharmacol 8:162–167. https://doi.org/10.2174/157015910792246182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Brusco LI (2014) Melatonin therapy in patients with Alzheimer’s disease. Antioxidants (Basel) 3:245–277. https://doi.org/10.3390/antiox3020245

    Article  CAS  PubMed  Google Scholar 

  197. Liguori C, Fernandes M, Cerroni R, Ludovisi R, Mercuri NB, Stefani A et al (2022) Effects of melatonin prolonged-release on both sleep and motor symptoms in Parkinson’s disease: a preliminary evidence. Neurol Sci. https://doi.org/10.1007/s10072-022-06111-x

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zeviani M, Viscomi C (2022) Mitochondrial neurodegeneration. Cells. https://doi.org/10.3390/cells11040637

    Article  PubMed  PubMed Central  Google Scholar 

  199. Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592:728–742. https://doi.org/10.1002/1873-3468.12956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348. https://doi.org/10.1146/annurev.pathol.4.110807.092314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG (2022) Melatonin: a mitochondrial resident with a diverse skill set. Life Sci 301:120612. https://doi.org/10.1016/j.lfs.2022.120612

    Article  CAS  PubMed  Google Scholar 

  202. Tan DX, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. https://doi.org/10.3390/ijms17122124

    Article  PubMed  PubMed Central  Google Scholar 

  203. Acuna-Castroviejo D, Rahim I, Acuna-Fernandez C, Fernandez-Ortiz M, Solera-Marin J, Sayed RKA et al (2017) Melatonin, clock genes and mitochondria in sepsis. Cell Mol Life Sci 74:3965–3987. https://doi.org/10.1007/s00018-017-2610-1

    Article  CAS  PubMed  Google Scholar 

  204. Ericson T, Singla P, Kohan L (2022) Intrathecal pumps. Phys Med Rehabil Clin N Am 33:409–424. https://doi.org/10.1016/j.pmr.2022.01.004

    Article  PubMed  Google Scholar 

  205. William J, Roehmer C, Mansy L, Kennedy DJ (2022) Epidural steroid injections. Phys Med Rehabil Clin N Am 33:215–231. https://doi.org/10.1016/j.pmr.2022.01.009

    Article  PubMed  Google Scholar 

  206. Kuthati Y, Lin SH, Chen IJ, Wong CS (2019) Melatonin and their analogs as a potential use in the management of neuropathic pain. J Formos Med Assoc 118:1177–1186. https://doi.org/10.1016/j.jfma.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  207. Chaudhry SR, Stadlbauer A, Buchfelder M, Kinfe TM (2021) Melatonin moderates the triangle of chronic pain, sleep architecture and immunometabolic traffic. Biomedicines. https://doi.org/10.3390/biomedicines9080984

    Article  PubMed  PubMed Central  Google Scholar 

  208. Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H et al (2022) Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605:509–515. https://doi.org/10.1038/s41586-022-04722-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Abo Taleb HA, Alghamdi BS (2020) Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 70:386–402. https://doi.org/10.1007/s12031-019-01425-6

    Article  CAS  PubMed  Google Scholar 

  210. Kumar RR, Singh L, Thakur A, Singh S, Kumar B (2021) Role of vitamins in neurodegenerative diseases: a review. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527320666211119122150

    Article  PubMed  Google Scholar 

  211. Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV (2022) Role of neural stem cells and vitamin D receptor (VDR)-mediated cellular signaling in the mitigation of neurological diseases. Mol Neurobiol. https://doi.org/10.1007/s12035-022-02837-z

    Article  PubMed  Google Scholar 

  212. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127:3210–3219. https://doi.org/10.1172/JCI90603

    Article  PubMed  PubMed Central  Google Scholar 

  213. Krstic R (1975) Scanning electron microscope observations of the canaliculi in the rat pineal gland. Experientia 31:1072–1074. https://doi.org/10.1007/BF02326967

    Article  CAS  PubMed  Google Scholar 

  214. Matsushima S, Sakai Y, Hira Y (1989) Twenty-four-hour changes in pinealocytes, capillary endothelial cells and pericapillary and intercellular spaces in the pineal gland of the mouse. Semiquantitative electron-microscopic observations. Cell Tissue Res 255:323–332. https://doi.org/10.1007/BF00224115

    Article  CAS  PubMed  Google Scholar 

  215. Quay WB (1974) Pineal canaliculi: demonstration, twenty-four-hour rhythmicity and experimental modification. Am J Anat 139:81–93. https://doi.org/10.1002/aja.1001390105

    Article  CAS  PubMed  Google Scholar 

  216. Arias-Carrion O (2008) Basic mechanisms of rTMS: implications in Parkinson’s disease. Int Arch Med 1:2. https://doi.org/10.1186/1755-7682-1-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant funding from agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Russel J. Reiter or Ramaswamy Sharma.

Ethics declarations

Conflict of interest

None of the authors declare a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, R.J., Sharma, R., Cucielo, M.S. et al. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell. Mol. Life Sci. 80, 88 (2023). https://doi.org/10.1007/s00018-023-04736-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04736-5

Keywords

Navigation