Skip to main content
Log in

Flow signaling and atherosclerosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Obtained permission to reproduce from Wolters Kluwer Health)

Fig. 3

Reprinted from Lerner-Marmarosh et al. [72], and obtained permission to reproduce from Wolters Kluwer Health

Fig. 4
Fig. 5

Reprinted and modified from Akaike et al. [77]

Fig. 6

Modified from Kayagaki et al. [114] with permission of the publisher. Copyright ©2015, Nature Publishing Group

Fig. 7

Modified from Woo et al. with permission of the publisher [227]

Fig. 8
Fig. 9

Reprinted from Heo, Berk, and Abe [36]

Similar content being viewed by others

References

  1. Abe J, Berk BC (1998) Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 8:59–64

    Article  CAS  PubMed  Google Scholar 

  2. Abe J, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Circ Res 86:607–609

    Article  CAS  PubMed  Google Scholar 

  3. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  CAS  PubMed  Google Scholar 

  4. Tseng H, Peterson TE, Berk BC (1995) Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res 77:869–878

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi M, Berk BC (1996) Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J Clin Invest 98:2623–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishida T, Peterson T, Kovach NL, Berk BC (1995) Integrins modulate fluid shear stress signal transduction in endothelial cells. Circulation (abstract) 92:I-629

    Google Scholar 

  7. Ishida T, Takahashi M, Corson MA, Berk BC (1997) Fluid shear stress-mediated signal transduction: how do endothelial cells transduce mechanical force into biological responses? Ann N Y Acad Sci 811:12–23

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, Ma X, Zhang W, Li X, Hu W, Miao RQ, Xiang R, Hajjar DP, Han J (2015) Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 35:948–959

    Article  CAS  PubMed  Google Scholar 

  9. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amini N, Boyle JJ, Moers B, Warboys CM, Malik TH, Zakkar M, Francis SE, Mason JC, Haskard DO, Evans PC (2014) Requirement of JNK1 for endothelial cell injury in atherogenesis. Atherosclerosis 235:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuhlmann S, Van der Heiden K, Saliba D, Tremoleda JL, Khalil M, Zakkar M, Chaudhury H, le Luong A, Mason JC, Udalova I, Gsell W, Jones H, Haskard DO, Krams R, Evans PC (2011) Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-kappaB regulation that promotes arterial inflammation. Circ Res 108:950–959

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhury H, Zakkar M, Boyle J, Cuhlmann S, van der Heiden K, le Luong A, Davis J, Platt A, Mason JC, Krams R, Haskard DO, Clark AR, Evans PC (2010) c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler Thromb Vasc Biol 30:546–553

    Article  CAS  PubMed  Google Scholar 

  13. Zakkar M, Chaudhury H, Sandvik G, Enesa K, le Luong A, Cuhlmann S, Mason JC, Krams R, Clark AR, Haskard DO, Evans PC (2008) Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that are resistant to atherosclerosis. Circ Res 103:726–732

    Article  CAS  PubMed  Google Scholar 

  14. De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E (1999) Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression. J Biol Chem 274:28978–28982

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad M, Theofanidis P, Medford RM (1998) Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 273:4616–4621

    Article  CAS  PubMed  Google Scholar 

  16. Min W, Pober JS (1997) TNF initiates E-selectin transcription in human endothelial cells through parallel TRAF-NF-kappa B and TRAF-RAC/CDC42-JNK-c-Jun/ATF2 pathways. J Immunol 159:3508–3518

    CAS  PubMed  Google Scholar 

  17. Oleinik NV, Krupenko NI, Krupenko SA (2007) Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26:7222–7230

    Article  CAS  PubMed  Google Scholar 

  18. Wong HK, Fricker M, Wyttenbach A, Villunger A, Michalak EM, Strasser A, Tolkovsky AM (2005) Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 25:8732–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson Jr EM (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    Article  CAS  PubMed  Google Scholar 

  21. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100:2432–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70

    Article  CAS  PubMed  Google Scholar 

  23. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, Boren J, Chen M, Cybulsky MI, Moore KJ, Freeman MW, Wagner EF, Matter CM, Luscher TF (2004) Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306:1558–1561

    Article  CAS  PubMed  Google Scholar 

  24. Sumara G, Belwal M, Ricci R (2005) “Jnking” atherosclerosis. Cell Mol Life Sci 62:2487–2494

    Article  CAS  PubMed  Google Scholar 

  25. Denes L, Jednakovits A, Hargitai J, Penzes Z, Balla A, Talosi L, Krajcsi P, Csermely P (2002) Pharmacologically activated migration of aortic endothelial cells is mediated through p38 SAPK. Br J Pharmacol 136:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 280:20995–21003

    Article  CAS  PubMed  Google Scholar 

  27. Borbiev T, Birukova A, Liu F, Nurmukhambetova S, Gerthoffer WT, Garcia JG, Verin AD (2004) p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 287:L911–L918

    Article  CAS  PubMed  Google Scholar 

  28. Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K, Sessa WC (2001) Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem 276:30359–30365

    Article  CAS  PubMed  Google Scholar 

  29. Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, Roth J (2004) Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood 103:3365–3373

    Article  CAS  PubMed  Google Scholar 

  30. Milkiewicz M, Kelland C, Colgan S, Haas TL (2006) Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol 208:229–237

    Article  CAS  PubMed  Google Scholar 

  31. Kardakaris R, Gareus R, Xanthoulea S, Pasparakis M (2011) Endothelial and macrophage-specific deficiency of P38alpha MAPK does not affect the pathogenesis of atherosclerosis in ApoE/ mice. PLoS One 6:e21055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pi X, Yan C, Berk BC (2004) Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ Res 94:362–369

    Article  CAS  PubMed  Google Scholar 

  34. Berk BC (2008) Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation 117:1082–1089

    Article  PubMed  Google Scholar 

  35. Yan C, Takahashi M, Okuda M, Lee JD, Berk BC (1999) Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells Dependence on tyrosine kinases and intracellular calcium. J Biol Chem 274:143–150

    Article  CAS  PubMed  Google Scholar 

  36. Heo KS, Berk B, Abe JI (2015) Disturbed flow-induced endothelial pro-atherogenic signaling via regulating post-translational modifications and epigenetic events. Antioxid Redox Signal 25:435

    Article  CAS  Google Scholar 

  37. Li L, Tatake RJ, Natarajan K, Taba Y, Garin G, Tai C, Leung E, Surapisitchat J, Yoshizumi M, Yan C, Abe J, Berk BC (2008) Fluid shear stress inhibits TNF-mediated JNK activation via MEK5-BMK1 in endothelial cells. Biochem Biophys Res Commun 370:159–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC (2001) Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci U S A 98:6476–6481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan G, Merritt SE, Kortenjann M, Shaw PE, Holzman LB (1996) Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38mapk but not ERK2. J Biol Chem 271:24788–24793

    Article  CAS  PubMed  Google Scholar 

  40. Carter CA (2000) Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets 1:163–183

    Article  CAS  PubMed  Google Scholar 

  41. Martelli AM, Faenza I, Billi AM, Fala F, Cocco L, Manzoli L (2003) Nuclear protein kinase C isoforms: key players in multiple cell functions? Histol Histopathol 18:1301–1312

    CAS  PubMed  Google Scholar 

  42. Shieh BH, Parker L, Popescu D (2002) Protein kinase C (PKC) isoforms in Drosophila. J Biochem 132:523–527

    Article  CAS  PubMed  Google Scholar 

  43. Storz P (2015) Targeting protein kinase C subtypes in pancreatic cancer. Expert Rev Anticancer Ther 15:433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fleming I, Mohamed A, Galle J, Turchanowa L, Brandes RP, Fisslthaler B, Busse R (2005) Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha. Cardiovasc Res 65:897–906

    Article  CAS  PubMed  Google Scholar 

  45. Lei S, Su W, Liu H, Xu J, Xia ZY, Yang QJ, Qiao X, Du Y, Zhang L, Xia Z (2013) Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-alpha: the role of PKC-beta2 and NADPH oxidase. Oxid Med Cell Longev 2013:678484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z (2013) Hyperglycemia-induced protein kinase C beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 62:2318–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu M, Chen J, Jiang H, Miao C (2013) Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells. Cardiovasc Diabetol 12:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng B, Xie S, Wang J, Xia Z, Nie R (2012) Inhibition of protein kinase C beta(2) prevents tumor necrosis factor-alpha-induced apoptosis and oxidative stress in endothelial cells: the role of NADPH oxidase subunits. J Vasc Res 49:144–159

    Article  CAS  PubMed  Google Scholar 

  49. Wang F, Liu HM, Irwin MG, Xia ZY, Huang Z, Ouyang J, Xia Z (2009) Role of protein kinase C beta2 activation in TNF-alpha-induced human vascular endothelial cell apoptosis. Can J Physiol Pharmacol 87:221–229

    Article  CAS  PubMed  Google Scholar 

  50. Kouroedov A, Eto M, Joch H, Volpe M, Luscher TF, Cosentino F (2004) Selective inhibition of protein kinase Cbeta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 110:91–96

    Article  CAS  PubMed  Google Scholar 

  51. Ergin V, Erdogan M, Karasu C, Menevse A (2013) 4,5-dianilinophtalimide protects neuroendocrine cells against serum deprivation-induced stress and apoptosis. Neuro Endocrinol Lett 34:359–365

    CAS  PubMed  Google Scholar 

  52. Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C (2014) Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromol Med 16:772–781

    Article  CAS  Google Scholar 

  53. Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, Kluge MA, Held A, Dohadwala MM, Gokce N, Farb MG, Rosenzweig J, Ruderman N, Vita JA, Hamburg NM (2013) Protein kinase C-beta contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 127:86–95

    Article  CAS  PubMed  Google Scholar 

  54. Park K, Li Q, Rask-Madsen C, Mima A, Mizutani K, Winnay J, Maeda Y, D’Aquino K, White MF, Feener EP, King GL (2013) Serine phosphorylation sites on IRS2 activated by angiotensin II and protein kinase C to induce selective insulin resistance in endothelial cells. Mol Cell Biol 33:3227–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, Yan SF (2009) Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. Faseb J 23:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, Yan SF (2013) PKCbeta promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler Thromb Vasc Biol 33:1779–1787

    Article  CAS  PubMed  Google Scholar 

  57. Beckman JA, Goldfine AB, Goldin A, Prsic A, Kim S, Creager MA (2010) Inhibition of protein kinase Cbeta does not improve endothelial function in type 2 diabetes. J Clin Endocrinol Metab 95:3783–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monti M, Donnini S, Giachetti A, Mochly-Rosen D, Ziche M (2010) deltaPKC inhibition or varepsilonPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification. J Mol Cell Cardiol 48:746–756

    Article  CAS  PubMed  Google Scholar 

  59. Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  PubMed  Google Scholar 

  60. Hirano Y, Yoshinaga S, Ogura K, Yokochi M, Noda Y, Sumimoto H, Inagaki F (2004) Solution structure of atypical protein kinase C PB1 domain and its mode of interaction with ZIP/p62 and MEK5. J Biol Chem 279:31883–31890

    Article  CAS  PubMed  Google Scholar 

  61. Javaid K, Rahman A, Anwar KN, Frey RS, Minshall RD, Malik AB (2003) Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res 92:1089–1097

    Article  CAS  PubMed  Google Scholar 

  62. Rahman A, Anwar KN, Malik AB (2000) Protein kinase C-zeta mediates TNF-alpha-induced ICAM-1 gene transcription in endothelial cells. Am J Physiol Cell Physiol 279:C906–C914

    CAS  PubMed  Google Scholar 

  63. Magid R, Davies PF (2005) Endothelial protein kinase C isoform identity and differential activity of PKCzeta in an athero-susceptible region of porcine aorta. Circ Res 97:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith L, Chen L, Reyland ME, DeVries TA, Talanian RV, Omura S, Smith JB (2000) Activation of atypical protein kinase C zeta by caspase processing and degradation by the ubiquitin-proteasome system. J Biol Chem 275:40620–40627

    Article  CAS  PubMed  Google Scholar 

  65. Smith L, Wang Z, Smith JB (2003) Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein. Biochem J 375:663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garin G, Abe J, Mohan A, Lu W, Yan C, Newby AC, Rhaman A, Berk BC (2007) Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ Res 101:97–105

    Article  CAS  PubMed  Google Scholar 

  67. You M, Yu DH, Feng GS (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 19:2416–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fukunaga K, Noguchi T, Takeda H, Matozaki T, Hayashi Y, Itoh H, Kasuga M (2000) Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J Biol Chem 275:5208–5213

    Article  CAS  PubMed  Google Scholar 

  69. Neel BG (1993) Structure and function of SH2-domain containing tyrosine phosphatases. Semin Cell Biol 4:419–432

    Article  CAS  PubMed  Google Scholar 

  70. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, Glassman M, Lee JD, Yan C, Berk BC, Abe J (2002) Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: Role of Gab1 and MEKK3 in TNF-a-induced c-Jun and NF-kB activation and adhesion molecule expression. Circ Res 90:1222

    Article  CAS  PubMed  Google Scholar 

  71. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B (2001) The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2:620–624

    Article  CAS  PubMed  Google Scholar 

  72. Lerner-Marmarosh N, Yoshizumi M, Che W, Surapisitchat J, Kawakatsu H, Akaike M, Ding B, Huang Q, Yan C, Berk BC, Abe JI (2003) Inhibition of tumor necrosis factor-[alpha]-induced SHP-2 phosphatase activity by shear stress: a mechanism to reduce endothelial inflammation. Arterioscler Thromb Vasc Biol 23:1775–1781

    Article  CAS  PubMed  Google Scholar 

  73. Young A, Wu W, Sun W, Larman HB, Wang N, Li YS, Shyy JY, Chien S, Garcia-Cardena G (2009) Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler Thromb Vasc Biol 29:1902–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Piqueras L, Sanz MJ, Perretti M, Morcillo E, Norling L, Mitchell JA, Li Y, Bishop-Bailey D (2009) Activation of PPARbeta/delta inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. J Leukoc Biol 86:115–122

    Article  CAS  PubMed  Google Scholar 

  75. Wang N, Verna L, Chen NG, Chen J, Li H, Forman BM, Stemerman MB (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem 277:34176–34181

    Article  CAS  PubMed  Google Scholar 

  76. Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272:10811–10816

    Article  CAS  PubMed  Google Scholar 

  77. Akaike M, Che W, Marmarosh NL, Ohta S, Osawa M, Ding B, Berk BC, Yan C, Abe J (2004) The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Mol Cell Biol 24:8691–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli SR, Yan C, Abe J (2006) ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 281:32164–32174

    Article  CAS  PubMed  Google Scholar 

  79. Lin Z, Natesan V, Shi H, Dong F, Kawanami D, Mahabeleshwar GH, Atkins GB, Nayak L, Cui Y, Finigan JH, Jain MK (2010) Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 30:1952–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone Jr MA, Garcia-Cardena G, Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, Jain MK (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726

    Article  CAS  PubMed  Google Scholar 

  83. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698

    Article  CAS  PubMed  Google Scholar 

  84. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone Jr MA, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116:49–58

    Article  CAS  PubMed  Google Scholar 

  85. Le NT, Heo KS, Takei Y, Lee H, Woo CH, Chang E, McClain C, Hurley C, Wang X, Li F, Xu H, Morrell C, Sullivan MA, Cohen MS, Serafimova IM, Taunton J, Fujiwara K, Abe J (2013) A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation 127:486–499

    Article  CAS  PubMed  Google Scholar 

  86. Wilhelmsen K, Mesa KR, Lucero J, Xu F, Hellman J (2012) ERK5 protein promotes, whereas MEK1 protein differentially regulates, the Toll-like receptor 2 protein-dependent activation of human endothelial cells and monocytes. J Biol Chem 287:26478–26494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao B, Li L, Lei Q, Guan KL (2010) The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312

    Article  CAS  PubMed  Google Scholar 

  89. Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC (2013) Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 6:rs15

    Article  PubMed  CAS  Google Scholar 

  90. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588:2663–2670

    Article  CAS  PubMed  Google Scholar 

  92. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24:2076–2086

    Article  CAS  PubMed  Google Scholar 

  93. Praskova M, Xia F, Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Song Q, Mao B, Cheng J, Gao Y, Jiang K, Chen J, Yuan Z, Meng S (2015) YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLoS One 10:e0120790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Campbell KN, Wong JS, Gupta R, Asanuma K, Sudol M, He JC, Mundel P (2013) Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem 288:17057–17062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  PubMed  Google Scholar 

  98. Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243:136–151

    Article  CAS  PubMed  Google Scholar 

  100. Chen Z, Martin M, Li Z, Shyy JY (2014) Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 25:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang WC, Marin T, Shentu TP, Wen L, Gongol B, Sun W, Liang X, Chen J, Huang HD, Pedra JH, Johnson DA, Shyy JY (2013) Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao X, Song BL (2013) SREBP: a novel therapeutic target. Acta Biochim Biophys Sin 45:2–10

    Article  CAS  PubMed  Google Scholar 

  103. Daemen S, Kutmon M, Evelo CT (2013) A pathway approach to investigate the function and regulation of SREBPs. Genes Nutr 8:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang WC, Marin T, Shentu TP, Wen L, Gongol B, Sun W, Liang X, Chen J, Huang HD, Pedra JHF, Johnson DA, Shyy JYJ (2013) SREBP2 Activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128:632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu Y, Chen BP, Lu M, Zhu Y, Stemerman MB, Chien S, Shyy JY (2002) Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler Thromb Vasc Biol 22:76–81

    Article  PubMed  Google Scholar 

  106. Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16:414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  PubMed  Google Scholar 

  109. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  110. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Shao F (2016) Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr Opin Microbiol 29:37–42

    Article  CAS  PubMed  Google Scholar 

  112. Hagar JA, Aachoui Y, Miao EA (2015) WildCARDs: inflammatory caspases directly detect LPS. Cell Res 25:149–150

    Article  CAS  PubMed  Google Scholar 

  113. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192

    Article  CAS  PubMed  Google Scholar 

  114. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  CAS  PubMed  Google Scholar 

  115. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25:1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Civelek M, Manduchi E, Riley RJ, Stoeckert Jr CJ, Davies PF (2009) Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res 105:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    Article  CAS  PubMed  Google Scholar 

  119. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674

    Article  CAS  PubMed  Google Scholar 

  120. Zeng L, Zampetaki A, Margariti A, Pepe AE, Alam S, Martin D, Xiao Q, Wang W, Jin ZG, Cockerill G, Mori K, Li YS, Hu Y, Chien S, Xu Q (2009) Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci U S A 106:8326–8331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971

    Article  PubMed  Google Scholar 

  122. Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232

    Article  CAS  PubMed  Google Scholar 

  123. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23:5651–5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hirasawa H, Jiang C, Zhang P, Yang FC, Yokota H (2010) Mechanical stimulation suppresses phosphorylation of eIF2alpha and PERK-mediated responses to stress to the endoplasmic reticulum. FEBS Lett 584:745–752

    Article  CAS  PubMed  Google Scholar 

  125. Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD (2004) Regulation and function of SUMO modification. J Biol Chem 279:53899–53902

    Article  CAS  PubMed  Google Scholar 

  126. Guo B, Yang SH, Witty J, Sharrocks AD (2007) Signalling pathways and the regulation of SUMO modification. Biochem Soc Trans 35:1414–1418

    Article  CAS  PubMed  Google Scholar 

  127. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  CAS  PubMed  Google Scholar 

  128. Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337:517–520

    Article  CAS  PubMed  Google Scholar 

  129. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  130. Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem 284:8223–8227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Henley JM, Craig TJ, Wilkinson KA (2014) Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 94:1249–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guo C, Henley JM (2014) Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 66:71–77

    Article  CAS  PubMed  Google Scholar 

  134. Woo CH, Shishido T, McClain C, Lim JH, Li JD, Yang J, Yan C, Abe J (2008) Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res 102:538–545

    Article  CAS  PubMed  Google Scholar 

  135. Heo KS, Chang E, Le NT, Cushman H, Yeh ET, Fujiwara K, Abe J (2013) De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ Res 112:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  PubMed  Google Scholar 

  137. Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe J (2011) PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. J Cell Biol 193:867–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nigro P, Abe J, Berk BC (2011) Flow shear stress and atherosclerosis: a matter of site specificity. Antioxid Redox Signal 15:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Garner E, Raj K (2008) Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle 7:277–282

    Article  CAS  PubMed  Google Scholar 

  140. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY, Li YS, Chien S (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97:9385–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Garner E, Martinon F, Tschopp J, Beard P, Raj K (2007) Cells with defective p53-p21-pRb pathway are susceptible to apoptosis induced by p84N5 via caspase-6. Cancer Res 67:7631–7637

    Article  CAS  PubMed  Google Scholar 

  142. Chen A, Huang X, Xue Z, Cao D, Huang K, Chen J, Pan Y, Gao Y (2015) The Role of p21 in apoptosis proliferation, cell cycle arrest, and antioxidant activity in UVB-irradiated human HaCaT keratinocytes. Med Sci Monit Basic Res 21:86–95

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  144. Heo KS, Le NT, Cushman HJ, Giancursio CJ, Chang E, Woo CH, Sullivan MA, Taunton J, Yeh ET, Fujiwara K, Abe J (2015) Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function. J Clin Invest 125:1299–1310

    Article  PubMed  PubMed Central  Google Scholar 

  145. Frodin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151:65–77

    Article  CAS  PubMed  Google Scholar 

  146. Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A 90:5889–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jagavelu K, Tietge UJ, Gaestel M, Drexler H, Schieffer B, Bavendiek U (2007) Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ Res 101:1104–1112

    Article  CAS  PubMed  Google Scholar 

  148. Chang E, Heo KS, Woo CH, Lee H, Le NT, Thomas TN, Fujiwara K, Abe J (2011) MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation. Blood 117:2527–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xiao L, Liu Y, Wang N (2014) New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol 306:H317–H325

    Article  CAS  PubMed  Google Scholar 

  150. Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israel A, Rajewsky K, Pasparakis M (2000) NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 5:981–992

    Article  CAS  PubMed  Google Scholar 

  152. Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, Winther de MP, Pasparakis M (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383

    Article  CAS  PubMed  Google Scholar 

  153. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  CAS  PubMed  Google Scholar 

  154. Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S (2010) Mechanism of hypoxia-induced NF-kappaB. Mol Cell Biol 30:4901–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee MH, Mabb AM, Gill GB, Yeh ET, Miyamoto S (2011) NF-kappaB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 43:180–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yang Y, Xia F, Hermance N, Mabb A, Simonson S, Morrissey S, Gandhi P, Munson M, Miyamoto S, Kelliher MA (2011) A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 31:2774–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8:986–993

    Article  CAS  PubMed  Google Scholar 

  158. Wuerzberger-Davis SM, Nakamura Y, Seufzer BJ, Miyamoto S (2007) NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26:641–651

    Article  CAS  PubMed  Google Scholar 

  159. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S (2006) Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311:1141–1146

    Article  CAS  PubMed  Google Scholar 

  160. Wu ZH, Mabb A, Miyamoto S (2005) PIDD: a switch hitter. Cell 123:980–982

    Article  CAS  PubMed  Google Scholar 

  161. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576

    Article  CAS  PubMed  Google Scholar 

  162. Miyamoto S (2011) Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res 21:116–130

    Article  CAS  PubMed  Google Scholar 

  163. Liu X, Chen W, Wang Q, Li L, Wang C (2013) Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog 9:e1003480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zaha VG, Young LH (2012) AMP-activated protein kinase regulation and biological actions in the heart. Circ Res 111:800–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Guo D, Chien S, Shyy JY (2007) Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res 100:564–571

    Article  CAS  PubMed  Google Scholar 

  166. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH (2010) Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang Y, Lee TS, Kolb EM, Sun K, Lu X, Sladek FM, Kassab GS, Garland Jr T, Shyy JY (2006) AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol 26:1281–1287

    Article  CAS  PubMed  Google Scholar 

  168. Wang Q, Zhang M, Liang B, Shirwany N, Zhu Y, Zou MH (2011) Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS One 6:e25436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gongol B, Marin T, Peng IC, Woo B, Martin M, King S, Sun W, Johnson DA, Chien S, Shyy JY (2013) AMPKalpha2 exerts its anti-inflammatory effects through PARP-1 and Bcl-6. Proc Natl Acad Sci U S A 110:3161–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ambrose HE, Papadopoulou V, Beswick RW, Wagner SD (2007) Poly-(ADP-ribose) polymerase-1 (Parp-1) binds in a sequence-specific manner at the Bcl-6 locus and contributes to the regulation of Bcl-6 transcription. Oncogene 26:6244–6252

    Article  CAS  PubMed  Google Scholar 

  172. Onyango IG, Tuttle JB, Bennett Jr JP (2005) Activation of p38 and N-acetylcysteine-sensitive c-Jun NH2-terminal kinase signaling cascades is required for induction of apoptosis in Parkinson’s disease cybrids. Mol Cell Neurosci 28:452–461

    Article  CAS  PubMed  Google Scholar 

  173. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta-Leal A, Quiles-Perez R, Rodriguez-Vargas JM, Ruiz de Almodovar M, Conde C, Ruiz-Extremera A, Oliver FJ (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 14:1179–1187

    Article  CAS  PubMed  Google Scholar 

  174. Altmeyer M, Hottiger MO (2009) Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging (Albany NY) 1:458–469

    Article  Google Scholar 

  175. Koh DW, Dawson TM, Dawson VL (2005) Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 52:5–14

    Article  CAS  PubMed  Google Scholar 

  176. Mangerich A, Burkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM (2007) Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol 179:5483–5492

    Article  CAS  PubMed  Google Scholar 

  178. Liu C, Liang B, Wang Q, Wu J, Zou MH (2010) Activation of AMP-activated protein kinase alpha1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. J Biol Chem 285:15346–15355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang W, Wang Q, Wu Y, Moriasi C, Liu Z, Dai X, Wang Q, Liu W, Yuan ZY, Zou MH (2014) Endothelial cell–specific liver kinase B1 deletion causes endothelial dysfunction and hypertension in mice in vivo. Circulation 129:1428–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rubio T, Vernia S, Sanz P (2013) SUMOylation of AMPKbeta2 subunit enhances AMP-activated protein kinase activity. Mol Biol Cell 24(1801–11):S1–S4

    Google Scholar 

  181. Yan Y, Ollila S, Wong IP, Vallenius T, Palvimo JJ, Vaahtomeri K, Makela TP (2015) SUMOylation of AMPK alpha 1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun 6:8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ritho J, Arold ST, Yeh ET (2015) A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress. Cell Rep 12:734–742

    Article  CAS  PubMed  Google Scholar 

  183. Han Z, Chen YR, Jones CI, Meenakshisundaram G, Zweier JL, Alevriadou BR (2007) Shear-induced reactive nitrogen species inhibit mitochondrial respiratory complex activities in cultured vascular endothelial cells. Am J Physiol Cell Physiol 292:C1103–C1112

    Article  CAS  PubMed  Google Scholar 

  184. Jayashankar V, Mueller IA, Rafelski SM (2016) Shaping the multi-scale architecture of mitochondria. Curr Opin Cell Biol 38:45–51

    Article  CAS  PubMed  Google Scholar 

  185. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  CAS  PubMed  Google Scholar 

  186. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ (2015) Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol 763:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 120:1178–1188

    Article  CAS  PubMed  Google Scholar 

  191. Zunino R, Braschi E, Xu L, McBride HM (2009) Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 284:17783–17795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zungu M, Schisler J, Willis MS (2011) All the Little Pieces-Regulation of Mitochondrial Fusion and Fission by Ubiquitin and Small Ubiquitin-Like Modifer and their Potential Relevance in the Heart. Circ J 75:2513–2521

    Article  CAS  PubMed  Google Scholar 

  193. Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, McBride HM (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    Article  CAS  PubMed  Google Scholar 

  195. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402

    Article  CAS  PubMed  Google Scholar 

  196. Prudent J, Zunino R, Sugiura A, Mattie S, Shore GC, McBride HM (2015) MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol Cell 59:941–955

    Article  CAS  PubMed  Google Scholar 

  197. Mendler L, Braun T, Muller S (2016) The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease. Circ Res 118:132–144

    Article  CAS  PubMed  Google Scholar 

  198. Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345

    Article  CAS  PubMed  Google Scholar 

  199. Heo KS, Berk BC, Abe JI (2016) Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events. Antioxid Redox Signal

  200. Kim GY, Nigro P, Fujiwara K, Abe J, Berk BC (2012) p62 binding to protein kinase C zeta regulates tumor necrosis factor alpha-induced apoptotic pathway in endothelial cells. Arterioscler Thromb Vasc Biol 32:2974–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Moscat J, Diaz-Meco MT, Wooten MW (2009) Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 16:1426–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  CAS  PubMed  Google Scholar 

  203. Hamm CA, Costa FF (2015) Epigenomes as therapeutic targets. Pharmacol Ther 151:72–86

    Article  CAS  PubMed  Google Scholar 

  204. Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan C, Fan Y, Jordan IK, Jo H (2014) Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 124:3187–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Illi B, Nanni S, Scopece A, Farsetti A, Biglioli P, Capogrossi MC, Gaetano C (2003) Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression. Circ Res 93:155–161

    Article  CAS  PubMed  Google Scholar 

  206. Guza R, Kotandeniya D, Murphy K, Dissanayake T, Lin C, Giambasu GM, Lad RR, Wojciechowski F, Amin S, Sturla SJ, Hudson RH, York DM, Jankowiak R, Jones R, Tretyakova NY (2011) Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Res 39:3988–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293

    Article  CAS  PubMed  Google Scholar 

  208. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  209. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33:e176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  212. Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    Article  CAS  PubMed  Google Scholar 

  213. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  214. Hsieh CL (2005) The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1. BMC Biochem 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Jiang YZ, Jimenez JM, Ou K, McCormick ME, Zhang LD, Davies PF (2014) Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo. Circ Res 115:32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhou G, Hamik A, Nayak L, Tian H, Shi H, Lu Y, Sharma N, Liao X, Hale A, Boerboom L, Feaver RE, Gao H, Desai A, Schmaier A, Gerson SL, Wang Y, Atkins GB, Blackman BR, Simon DI, Jain MK (2012) Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J Clin Invest 122:4727–4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779

    Article  CAS  PubMed  Google Scholar 

  218. Villarreal Jr G, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 391:984–989

    Article  CAS  Google Scholar 

  219. Zhou J, Li YS, Wang KC, Chien S (2014) Epigenetic mechanism in regulation of endothelial function by disturbed flow: induction of DNA hypermethylation by DNMT1. Cell Mol Bioeng 7:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Iordache F, Buzila C, Constantinescu A, Andrei E, Maniu H (2012) Histone deacetylase (HDAC) inhibitors down-regulate endothelial lineage commitment of umbilical cord blood derived endothelial progenitor cells. Int J Mol Sci 13:15074–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen W, Bacanamwo M, Harrison DG (2008) Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem 283:16293–16298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC, Chien S, Chiu JJ (2012) Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A 109:1967–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG (2010) Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115:2971–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Schulman IG, Juguilon H, Evans RM (1996) Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol Cell Biol 16:3807–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–96

    Article  CAS  PubMed  Google Scholar 

  226. Abe J, Morrell C (2016) Pyroptosis as a Regulated Form of Necrosis: PI+/Annexin V−/High Caspase 1/Low Caspase 9 Activity in Cells = Pyroptosis? Circ Res 118:1457–1460

    Article  CAS  PubMed  Google Scholar 

  227. Woo CH, Abe J (2010) SUMO–a post-translational modification with therapeutic potential? Curr Opin Pharmacol 10:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Abe J, Berk BC (2014) Novel mechanisms of endothelial mechanotransduction. Arterioscler Thromb Vasc Biol 34:2378–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Grants from the National Institute of Health to Dr. Abe (HL-130193, HL-123346, HL-118462), and from American Heart Association to Dr. Le (AHA 13SDG14500033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhat-Tu Le.

Ethics declarations

Conflict of interest

No conflicts of interest or financial disclosures to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, NT., Sandhu, U.G., Quintana-Quezada, R.A. et al. Flow signaling and atherosclerosis. Cell. Mol. Life Sci. 74, 1835–1858 (2017). https://doi.org/10.1007/s00018-016-2442-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2442-4

Keywords

Navigation