Skip to main content
Log in

mTORC1–S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Emerging evidence is implicating abnormal activation of the mechanistic target of rapamycin (mTOR) pathway in several monogenetic neuropsychiatric disorders, including Angelman syndrome (AS), which is caused by deficiency in maternally inherited UBE3A. Using an AS mouse model, we show that semi-chronic rapamycin treatment improves long-term potentiation (LTP) and actin polymerization in hippocampal slices, spine morphology, and fear-conditioning learning. Activity of mTORC1 and of its downstream substrate, S6K1, was increased in hippocampus of AS mice. However, mTORC2 activity, as reflected by PKCα levels, was decreased. Both increased mTORC1 and decreased mTORC2 activities were reversed by semi-chronic rapamycin treatment. Acute treatment of hippocampal slices from AS mice with rapamycin or an S6K1 inhibitor, PF4708671, improved LTP, restored actin polymerization, and normalized mTORC1 and mTORC2 activity. These treatments also reduced Arc levels in AS mice. Treatment with Torin 1, an inhibitor of both mTORC1 and mTORC2, partially rescued LTP and actin polymerization in hippocampal slices from AS mice, while partially impairing them in wild-type (WT) mice. Torin 1 decreased mTORC1 and increased mTORC2 activity in slices from AS mice but inhibited both mTORC1 and mTORC2 in WT mice. Finally, an mTORC2 activator, A-443654, increased hippocampal LTP in AS mice and actin polymerization in both WT and AS mice. Collectively, these results indicate that events set in motion by increased mTORC1 and decreased mTORC2 activities, including increased Arc translation and impaired actin remodeling, are crucial in AS pathogenesis. Therefore, selectively targeting these two master kinase complexes may provide new therapeutic approaches for AS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

Arc:

Activity-regulated cytoskeleton-associated protein

AS:

Angelman syndrome

BDNF:

Brain-derived neurotrophic factor

CS:

Conditioned stimuli

F-actin:

Filamentous actin

i.p.:

Intraperitoneally

LTP:

Long-term potentiation

mTOR:

Mechanistic target of rapamycin

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

TBS:

Theta-burst stimulation

US:

Unconditioned stimuli

WT:

Wild-type

References

  1. Barry RJ, Leitner RP, Clarke AR, Einfeld SL (2005) Behavioral aspects of Angelman syndrome: a case control study. Am J Med Genet A 132A(1):8–12. doi:10.1002/ajmg.a.30154

    Article  PubMed  Google Scholar 

  2. Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc Natl Acad Sci USA 107(41):17668–17673. doi:10.1073/pnas.1004487107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dan B (2009) Angelman syndrome: current understanding and research prospects. Epilepsia 50(11):2331–2339. doi:10.1111/j.1528-1167.2009.02311.x

    Article  PubMed  Google Scholar 

  4. Peters SU, Beaudet AL, Madduri N, Bacino CA (2004) Autism in Angelman syndrome: implications for autism research. Clin Genet 66(6):530–536. doi:10.1111/j.1399-0004.2004.00362.x

    Article  CAS  PubMed  Google Scholar 

  5. Lalande M, Calciano MA (2007) Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 64(7–8):947–960. doi:10.1007/s00018-007-6460-0

    Article  CAS  PubMed  Google Scholar 

  6. Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, Beaudet AL (1997) Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17(1):75–78. doi:10.1038/ng0997-75

    Article  CAS  PubMed  Google Scholar 

  7. Gustin RM, Bichell TJ, Bubser M, Daily J, Filonova I, Mrelashvili D, Deutch AY, Colbran RJ, Weeber EJ, Haas KF (2010) Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 39(3):283–291. doi:10.1016/j.nbd.2010.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, Gall C, Bi X (2012) Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis 47(2):210–215. doi:10.1016/j.nbd.2012.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–811

    Article  CAS  PubMed  Google Scholar 

  10. van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, Jiang YH, Elgersma Y, Weeber EJ (2007) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10(3):280–282. doi:10.1038/nn1845

    Article  PubMed  Google Scholar 

  11. Kaphzan H, Hernandez P, Jung JI, Cowansage KK, Deinhardt K, Chao MV, Abel T, Klann E (2012) Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry 72(3):182–190. doi:10.1016/j.biopsych.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heck DH, Zhao Y, Roy S, LeDoux MS, Reiter LT (2008) Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet 17(14):2181–2189. doi:10.1093/hmg/ddn117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, Riday TT, Yashiro K, Philpot BD, Moy SS (2013) Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res 243:79–90. doi:10.1016/j.bbr.2012.12.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140(5):704–716. doi:10.1016/j.cell.2010.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuhnle S, Mothes B, Matentzoglu K, Scheffner M (2013) Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci USA 110(22):8888–8893. doi:10.1073/pnas.1302792110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52(3):445–459. doi:10.1016/j.neuron.2006.08.033

  17. Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52(3):461–474. doi:10.1016/j.neuron.2006.09.031

  18. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52(3):475–484. doi:10.1016/j.neuron.2006.08.034

  19. Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, Spaller MR, Goebel DJ, Marshall J (2013) Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 11(2):e1001478. doi:10.1371/journal.pbio.1001478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehninger D, Silva AJ (2011) Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol Med 17(2):78–87. doi:10.1016/j.molmed.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  21. Costa-Mattioli M, Monteggia LM (2013) mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16(11):1537–1543. doi:10.1038/nn.3546

    Article  CAS  PubMed  Google Scholar 

  22. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61(1):10–26. doi:10.1016/j.neuron.2008.10.055

    Article  CAS  PubMed  Google Scholar 

  23. He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJ, Chen J, Wang F (2013) Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 24(21):3369–3380. doi:10.1091/mbc.E13-07-0405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G, Costa-Mattioli M (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16(4):441–448. doi:10.1038/nn.3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128. doi:10.1038/ncb1183

    Article  CAS  PubMed  Google Scholar 

  26. Thomanetz V, Angliker N, Cloetta D, Lustenberger RM, Schweighauser M, Oliveri F, Suzuki N, Ruegg MA (2013) Ablation of the mTORC2 component Rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201(2):293–308. doi:10.1083/jcb.201205030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun J, Liu Y, Moreno S, Baudry M, Bi X (2015) Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci 35(11):4706–4718. doi:10.1523/JNEUROSCI.4276-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, Wang Y, Claus C, Luo Y, Baudry M, Bi X (2015) UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep 12(3):449–461. doi:10.1016/j.celrep.2015.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M, Bi X, Baudry M (2015) Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci 35(5):2269–2282. doi:10.1523/JNEUROSCI.2302-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17(1):111–118. doi:10.1093/hmg/ddm288

    Article  CAS  PubMed  Google Scholar 

  31. Bornancin F, Parker PJ (1997) Phosphorylation of protein kinase C-alpha on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem 272(6):3544–3549

    Article  CAS  PubMed  Google Scholar 

  32. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302. doi:10.1016/j.cub.2004.06.054

    Article  CAS  PubMed  Google Scholar 

  33. Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, Zheng JQ (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13(10):1208–1215. doi:10.1038/nn.2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS (2010) Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1, 6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53(19):7146–7155. doi:10.1021/jm101144f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032. doi:10.1074/jbc.M900301200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han EK, Leverson JD, McGonigal T, Shah OJ, Woods KW, Hunter T, Giranda VL, Luo Y (2007) Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26(38):5655–5661. doi:10.1038/sj.onc.1210343

    Article  CAS  PubMed  Google Scholar 

  38. Bi X, Sun J, Ji AX, Baudry M (2015) Potential therapeutic approaches for Angelman syndrome. Expert Opin Ther Targets 1–13. doi:10.1517/14728222.2016.1115837

  39. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291. doi:10.1016/j.neuron.2014.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawicka K, Zukin RS (2012) Dysregulation of mTOR signaling in neuropsychiatric disorders: therapeutic implications. Neuropsychopharmacology 37(1):305–306. doi:10.1038/npp.2011.210

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharya A, Mamcarz M, Mullins C, Choudhury A, Boyle RG, Smith DG, Walker DW, Klann E (2015) Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile X syndrome mice. Neuropsychopharmacology. doi:10.1038/npp.2015.369

    PubMed  Google Scholar 

  42. Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30(4):908–921. doi:10.1128/MCB.00601-09

    Article  CAS  PubMed  Google Scholar 

  43. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. doi:10.1016/j.tins.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  44. Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21(4):741–751

    Article  CAS  PubMed  Google Scholar 

  45. Andrade-Talavera Y, Benito I, Casanas JJ, Rodriguez-Moreno A, Montesinos ML (2015) Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down’s syndrome. Neurobiol Dis 82:516–525. doi:10.1016/j.nbd.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  46. Johnson JL, Huang W, Roman G, Costa-Mattioli M (2015) TORC2: a novel target for treating age-associated memory impairment. Sci Rep 5:15193. doi:10.1038/srep15193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Angliker N, Ruegg MA (2013) In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture 3(4):113–118. doi:10.4161/bioa.26497

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baudry M, Bi X (2013) Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 104:64–72. doi:10.1016/j.nlm.2013.04.012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants P01NS045260 (PI: Dr. C.M. Gall) and R01NS057128 from NINDS to MB and R15MH101703 from NIMH to XB. XB is also supported by funds from the Daljit and Elaine Sarkaria Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Bi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

J. Sun and Y. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 904 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Liu, Y., Tran, J. et al. mTORC1–S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell. Mol. Life Sci. 73, 4303–4314 (2016). https://doi.org/10.1007/s00018-016-2269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2269-z

Keywords

Navigation