Skip to main content

Advertisement

Log in

Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

APC:

Antigen presenting cell

APRIL:

A proliferation-inducing ligand

BAFF:

B-cell activating factor

BM:

Bone marrow

BMSC:

BM stromal cell

CAM-DR:

Cell-adhesion mediated drug resistance

CAR:

Chimeric antigen receptor

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cell

GvHD:

Graft versus host disease

GvM:

Graft-versus-myeloma

IFN:

Interferon

Ig:

Immunoglobulin

ILC:

Innate lymphoid cell

KIR:

Killer cell immunoglobulin-like receptor

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

MDSC:

Myeloid-derived suppressor cells

MGUS:

Monoclonal gammopathy of undetermined significance

MHC:

Major histocompatibility complex

MM:

Multiple myeloma

MSC:

Mesenchymal stem cell

NK:

Natural killer

PAMPs:

Pathogen-associated molecular patterns

pDC:

Plasmacytoid DC

PBMC:

Peripheral blood mononuclear cells

RANK:

Receptor activator of NF-κB

SCID:

Severe combined immunodeficient

TAM:

Tumor-associated macrophages

TCR:

T cell receptor

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TRAIL:

TNF-related apoptosis inducing ligand

Treg:

Regulatory T cell

VEGF:

Vascular endothelial growth factor

References

  1. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364(11):1046–1060. doi:10.1056/NEJMra1011442

    Article  CAS  PubMed  Google Scholar 

  2. Vincent Rajkumar S (2014) Multiple myeloma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 89(10):999–1009. doi:10.1002/ajh.23810

    CAS  PubMed  Google Scholar 

  3. International Myeloma Working G (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121(5):749–757

    Article  Google Scholar 

  4. Rollig C, Knop S, Bornhauser M (2015) Multiple myeloma. Lancet 385(9983):2197–2208. doi:10.1016/S0140-6736(14)60493-1

    Article  PubMed  CAS  Google Scholar 

  5. Tangye SG (2011) Staying alive: regulation of plasma cell survival. Trends Immunol 32(12):595–602. doi:10.1016/j.it.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Chu VT, Berek C (2013) The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev 251(1):177–188. doi:10.1111/imr.12011

    Article  PubMed  CAS  Google Scholar 

  7. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187. doi:10.1038/nrc746

    Article  CAS  PubMed  Google Scholar 

  8. De Raeve HR, Vanderkerken K (2005) The role of the bone marrow microenvironment in multiple myeloma. Histol Histopathol 20(4):1227–1250

    PubMed  Google Scholar 

  9. Bergsagel PL, Kuehl WM (2001) Chromosome translocations in multiple myeloma. Oncogene 20(40):5611–5622. doi:10.1038/sj.onc.1204641

    Article  CAS  PubMed  Google Scholar 

  10. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM, Fenton JA, Hideshima T, Chauhan D, Tai IT, Robinson E, Auclair D, Rees K, Gonzalez D, Ashcroft AJ, Dasgupta R, Mitsiades C, Mitsiades N, Chen LB, Wong WH, Munshi NC, Morgan GJ, Anderson KC (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102(13):4504–4511. doi:10.1182/blood-2003-01-0016

    Article  CAS  PubMed  Google Scholar 

  11. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106. doi:10.1038/nri1779

    Article  CAS  PubMed  Google Scholar 

  12. Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, Di Raimondo F (2014) Immunological dysregulation in multiple myeloma microenvironment. BioMed Res Int 2014:198539. doi:10.1155/2014/198539

    PubMed  PubMed Central  Google Scholar 

  13. Kawano Y, Moschetta M, Manier S, Glavey S, Gorgun GT, Roccaro AM, Anderson KC, Ghobrial IM (2015) Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 263(1):160–172. doi:10.1111/imr.12233

    Article  PubMed  Google Scholar 

  14. De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol 5:423. doi:10.3389/fimmu.2014.00423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Matthes T, Manfroi B, Zeller A, Dunand-Sauthier I, Bogen B, Huard B (2015) Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia 29(9):1882–1890. doi:10.1038/leu.2015.145

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114(17):3625–3628. doi:10.1182/blood-2009-05-220285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, Asimakopoulos F, Hematti P (2012) Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol 158(3):336–346. doi:10.1111/j.1365-2141.2012.09154.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7(7):543–555. doi:10.1038/nri2103

    Article  CAS  PubMed  Google Scholar 

  19. Shortman K, Sathe P, Vremec D, Naik S, O’Keeffe M (2013) Plasmacytoid dendritic cell development. Adv Immunol 120:105–126. doi:10.1016/B978-0-12-417028-5.00004-1

    Article  CAS  PubMed  Google Scholar 

  20. Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng G, van der Velden AW, Cariappa A, Chase C, Russell P, Starnbach MN, Koni PA, Pillai S, Weninger W, von Andrian UH (2005) Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6(10):1029–1037. doi:10.1038/ni1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karle H, Hansen NE, Plesner T (1976) Neutrophil defect in multiple myeloma. Studies on intraneutrophilic lysozyme in multiple myeloma and malignant lymphoma. Scand J Haematol 17(1):62–70

    Article  CAS  PubMed  Google Scholar 

  22. Wong TW, Kita H, Hanson CA, Walters DK, Arendt BK, Jelinek DF (2013) Induction of malignant plasma cell proliferation by eosinophils. PLoS One 8(7):e70554. doi:10.1371/journal.pone.0070554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong D, Winter O, Hartig C, Siebels S, Szyska M, Tiburzy B, Meng L, Kulkarni U, Fahnrich A, Bommert K, Bargou R, Berek C, Chu VT, Bogen B, Jundt F, Manz RA (2014) Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches. PLoS One 9(10):e109018. doi:10.1371/journal.pone.0109018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Klose CS, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356. doi:10.1016/j.cell.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  25. Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F (2012) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37(3):463–474. doi:10.1016/j.immuni.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  26. Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL (2011) Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118(20):5439–5447. doi:10.1182/blood-2011-04-348912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guillerey C, Smyth MJ (2015) NK cells and cancer immunoediting. Curr Top Microbiol Immunol. doi:10.1007/82_2015_446

    Google Scholar 

  28. Godfrey J, Benson DM Jr (2012) The role of natural killer cells in immunity against multiple myeloma. Leuk Lymphoma 53(9):1666–1676. doi:10.3109/10428194.2012.676175

    Article  CAS  PubMed  Google Scholar 

  29. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907. doi:10.1038/nature06309

    Article  CAS  PubMed  Google Scholar 

  30. Hughes V (2011) Microenvironment: neighbourhood watch. Nature 480(7377):S48–S49. doi:10.1038/480S48a

    Article  CAS  PubMed  Google Scholar 

  31. Di Rosa F, Pabst R (2005) The bone marrow: a nest for migratory memory T cells. Trends Immunol 26(7):360–366. doi:10.1016/j.it.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  32. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W (2012) Bone marrow and the control of immunity. Cell Mol Immunol 9(1):11–19. doi:10.1038/cmi.2011.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu J, Paul WE (2010) Heterogeneity and plasticity of T helper cells. Cell Res 20(1):4–12. doi:10.1038/cr.2009.138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Whiteside TL (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22(4):327–334. doi:10.1016/j.semcancer.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64(22):8451–8455. doi:10.1158/0008-5472.CAN-04-1987

    Article  CAS  PubMed  Google Scholar 

  36. Blade J, Fernandez de Larrea C, Rosinol L, Cibeira MT, Jimenez R, Powles R (2011) Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol 29(28):3805–3812. doi:10.1200/JCO.2011.34.9290

    Article  PubMed  Google Scholar 

  37. Katz BZ (2010) Adhesion molecules—the lifelines of multiple myeloma cells. Semin Cancer Biol 20(3):186–195. doi:10.1016/j.semcancer.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  38. Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85(4):863–872

    CAS  PubMed  Google Scholar 

  39. Asaoku H, Kawano M, Iwato K, Tanabe O, Tanaka H, Hirano T, Kishimoto T, Kuramoto A (1988) Decrease in BSF-2/IL-6 response in advanced cases of multiple myeloma. Blood 72(2):429–432

    CAS  PubMed  Google Scholar 

  40. Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC, Anderson KC (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol/Oncol Clin N Am 21(6):1007–1034. doi:10.1016/j.hoc.2007.08.007

    Article  Google Scholar 

  41. Kishimoto T (1989) The biology of interleukin-6. Blood 74(1):1–10

    CAS  PubMed  Google Scholar 

  42. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24(4):986–991. doi:10.1634/stemcells.2005-0220

    Article  CAS  PubMed  Google Scholar 

  43. Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Lohning M, Berek C (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12(2):151–159. doi:10.1038/ni.1981

    Article  CAS  PubMed  Google Scholar 

  44. San-Miguel J, Blade J, Shpilberg O, Grosicki S, Maloisel F, Min CK, Polo Zarzuela M, Robak T, Prasad SV, Tee Goh Y, Laubach J, Spencer A, Mateos MV, Palumbo A, Puchalski T, Reddy M, Uhlar C, Qin X, van de Velde H, Xie H, Orlowski RZ (2014) Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood 123(26):4136–4142. doi:10.1182/blood-2013-12-546374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, Gross JA, Greipp PR, Jelinek DF (2004) Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103(2):689–694. doi:10.1182/blood-2003-06-2043

    Article  CAS  PubMed  Google Scholar 

  46. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C, Moine P, Rossi JF, Klein B, Tarte K (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103(8):3148–3157. doi:10.1182/blood-2003-06-1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P, Pantesco V, De Vos J, Jourdan E, Jauch A, Legouffe E, Moos M, Fiol G, Goldschmidt H, Rossi JF, Hose D, Klein B (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106(3):1021–1030. doi:10.1182/blood-2004-11-4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, Pai C, Amin S, Tai YT, Richardson PG, Ghobrial IM, Treon SP, Daley JF, Anderson KC, Kutok JL, Munshi NC (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–5392. doi:10.1182/blood-2009-10-246660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barille S, Collette M, Bataille R, Amiot M (1995) Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 86(8):3151–3159

    CAS  PubMed  Google Scholar 

  50. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G, Epstein J (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91(2):192–199

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23(1):10–24. doi:10.1038/leu.2008.259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, Bonomini S, Hojden M, Sammarelli G, Barille S, Bataille R, Rizzoli V (2002) Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100(13):4615–4621. doi:10.1182/blood-2002-04-1121

    Article  CAS  PubMed  Google Scholar 

  53. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I (2010) A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116(18):3554–3563. doi:10.1182/blood-2010-05-283895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93(9):3064–3073

    CAS  PubMed  Google Scholar 

  55. Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S (2011) Angiogenesis and multiple myeloma. Cancer Microenviron 4(3):325–337. doi:10.1007/s12307-011-0072-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ribatti D, Nico B, Vacca A (2015) Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Int Rev Cell Molec Biol 314:259–282. doi:10.1016/bs.ircmb.2014.10.004

    Article  Google Scholar 

  57. Berardi S, Ria R, Reale A, De Luisi A, Catacchio I, Moschetta M, Vacca A (2013) Multiple myeloma macrophages: pivotal players in the tumor microenvironment. J Oncol 2013:183602. doi:10.1155/2013/183602

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30(1):83–95. doi:10.1007/s10555-011-9281-4

    Article  CAS  PubMed  Google Scholar 

  59. Rossi M, Botta C, Correale P, Tassone P, Tagliaferri P (2013) Immunologic microenvironment and personalized treatment in multiple myeloma. Exp Opin Biol Ther 13(Suppl 1):S83–S93. doi:10.1517/14712598.2013.799130

    Article  CAS  Google Scholar 

  60. Tete SM, Bijl M, Sahota SS, Bos NA (2014) Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma. Front Immunol 5:257. doi:10.3389/fimmu.2014.00257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xu FH, Sharma S, Gardner A, Tu Y, Raitano A, Sawyers C, Lichtenstein A (1998) Interleukin-6-induced inhibition of multiple myeloma cell apoptosis: support for the hypothesis that protection is mediated via inhibition of the JNK/SAPK pathway. Blood 92(1):241–251

    CAS  PubMed  Google Scholar 

  62. Zheng Y, Yang J, Qian J, Qiu P, Hanabuchi S, Lu Y, Wang Z, Liu Z, Li H, He J, Lin P, Weber D, Davis RE, Kwak L, Cai Z, Yi Q (2013) PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27(3):702–710. doi:10.1038/leu.2012.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Franqui-Machin R, Wendlandt EB, Janz S, Zhan F, Tricot G (2015) Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? Oncotarget 6(38):40496–40506. doi:10.18632/oncotarget.5800

    PubMed  Google Scholar 

  64. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081. doi:10.1093/carcin/bgp127

    Article  CAS  PubMed  Google Scholar 

  65. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chow MT, Moller A, Smyth MJ (2012) Inflammation and immune surveillance in cancer. Semin Cancer Biol 22(1):23–32. doi:10.1016/j.semcancer.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  67. Ridnour LA, Cheng RY, Switzer CH, Heinecke JL, Ambs S, Glynn S, Young HA, Trinchieri G, Wink DA (2013) Molecular pathways: toll-like receptors in the tumor microenvironment—poor prognosis or new therapeutic opportunity. Clin Cancer Res 19(6):1340–1346. doi:10.1158/1078-0432.ccr-12-0408

    Article  CAS  PubMed  Google Scholar 

  68. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. doi:10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25. doi:10.1016/j.it.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi:10.1038/nature10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watson GA, Fu YX, Lopez DM (1991) Splenic macrophages from tumor-bearing mice co-expressing MAC-1 and MAC-2 antigens exert immunoregulatory functions via two distinct mechanisms. J Leukoc Biol 49(2):126–138

    CAS  PubMed  Google Scholar 

  75. Kusmartsev SA, Li Y, Chen SH (2000) Gr-1 + myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165(2):779–785

    Article  CAS  PubMed  Google Scholar 

  76. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849. doi:10.1158/0008-5472.can-04-0465

    Article  CAS  PubMed  Google Scholar 

  77. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi:10.1158/0008-5472.can-07-6621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70(1):99–108. doi:10.1158/0008-5472.can-09-1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. doi:10.1158/0008-5472.can-05-1299

    Article  CAS  PubMed  Google Scholar 

  80. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  81. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190(7):3815–3823. doi:10.4049/jimmunol.1203373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De Baetselier P, Vanderkerken K, Van Ginderachter JA (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26(11):2424–2428. doi:10.1038/leu.2012.113

    Article  PubMed  Google Scholar 

  83. De Veirman K, Van Valckenborgh E, Lahmar Q, Geeraerts X, De Bruyne E, Menu E, Van Riet I, Vanderkerken K, Van Ginderachter JA (2014) Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol 4:349. doi:10.3389/fonc.2014.00349

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR(-)/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72(6):540–547. doi:10.1111/j.1365-3083.2010.02463.x

    Article  CAS  PubMed  Google Scholar 

  85. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, Raje N, Munshi NC, Richardson PG, Anderson KC (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15):2975–2987. doi:10.1182/blood-2012-08-448548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Favaloro J, Liyadipitiya T, Brown R, Yang S, Suen H, Woodland N, Nassif N, Hart D, Fromm P, Weatherburn C, Gibson J, Ho PJ, Joshua D (2014) Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma 55(12):2893–2900. doi:10.3109/10428194.2014.904511

    Article  CAS  PubMed  Google Scholar 

  87. De Keersmaecker B, Fostier K, Corthals J, Wilgenhof S, Heirman C, Aerts JL, Thielemans K, Schots R (2014) Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother: CII 63(10):1023–1036. doi:10.1007/s00262-014-1571-6

    Article  PubMed  CAS  Google Scholar 

  88. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi:10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  89. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. doi:10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105(1):1–8. doi:10.1111/cas.12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suyani E, Sucak GT, Akyurek N, Sahin S, Baysal NA, Yagci M, Haznedar R (2013) Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Ann Hematol 92(5):669–677. doi:10.1007/s00277-012-1652-6

    Article  PubMed  Google Scholar 

  92. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A (2014) Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol 5:127. doi:10.3389/fimmu.2014.00127

    PubMed  PubMed Central  Google Scholar 

  93. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70(14):5728–5739. doi:10.1158/0008-5472.can-09-4672

    Article  CAS  PubMed  Google Scholar 

  94. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science (New York, NY) 344(6186):921–925. doi:10.1126/science.1252510

    Article  CAS  Google Scholar 

  95. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119(8):1810–1820. doi:10.1182/blood-2011-09-379214

    Article  CAS  PubMed  Google Scholar 

  96. Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, Karroum O, Jordan B, Carmeliet P, Gysemans C, De Baetselier P, Mazzone M, Van Ginderachter JA (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74(1):24–30. doi:10.1158/0008-5472.can-13-1196

    Article  CAS  PubMed  Google Scholar 

  97. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453. doi:10.1084/jem.20100587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, Bacigalupo A, Mangialardi G, Coluccia AM, Caravita T, Molica S, Ribatti D, Dammacco F, Vacca A (2008) Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 27(5):663–674. doi:10.1038/sj.onc.1210691

    Article  CAS  PubMed  Google Scholar 

  99. Costes V, Portier M, Lu Z-Y, Rossi J-F, Bataille R, Klein B (1998) Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol 103(4):1152–1160. doi:10.1046/j.1365-2141.1998.01101.x

    Article  CAS  PubMed  Google Scholar 

  100. Hope C, Ollar SJ, Heninger E, Hebron E, Jensen JL, Kim J, Maroulakou I, Miyamoto S, Leith C, Yang DT, Callander N, Hematti P, Chesi M, Bergsagel PL, Asimakopoulos F (2014) TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 123(21):3305–3315. doi:10.1182/blood-2014-02-554071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Otsuki T, Yata K, Sakaguchi H, Uno M, Fujii T, Wada H, Sugihara T, Ueki A (2002) IL-10 in myeloma cells. Leuk Lymphoma 43(5):969–974

    Article  CAS  PubMed  Google Scholar 

  102. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25(31):4257–4266. doi:10.1038/sj.onc.1209456

    Article  CAS  PubMed  Google Scholar 

  103. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  104. Garcia-Sanz R, Gonzalez M, Orfao A, Moro MJ, Hernandez JM, Borrego D, Carnero M, Casanova F, Barez A, Jimenez R, Portero JA, San Miguel JF (1996) Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol 93(1):81–88

    Article  CAS  PubMed  Google Scholar 

  105. Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MC, Teng MW, Colonna M, Ritchie DS, Chesi M, Bergsagel PL, Hill GR, Smyth MJ, Martinet L (2015) Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Investig 125(5):2077–2089. doi:10.1172/JCI77181

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ponzetta A, Benigni G, Antonangeli F, Sciume G, Sanseviero E, Zingoni A, Ricciardi MR, Petrucci MT, Santoni A, Bernardini G (2015) Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res. doi:10.1158/0008-5472.CAN-15-1320

    PubMed  Google Scholar 

  107. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE, Morgan GJ, Cook GP (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67(18):8444–8449. doi:10.1158/0008-5472.CAN-06-4230

    Article  CAS  PubMed  Google Scholar 

  108. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, Groh V, Spies T, Pollio G, Cosman D, Catalano L, Tassone P, Rotoli B, Venuta S (2005) HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 105(1):251–258. doi:10.1182/blood-2004-04-1422

    Article  CAS  PubMed  Google Scholar 

  109. Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J (2002) Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 119(3):660–664

    Article  CAS  PubMed  Google Scholar 

  110. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foa R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511. doi:10.1182/blood-2008-08-173914

    Article  CAS  PubMed  Google Scholar 

  111. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5(3):201–214. doi:10.1038/nri1570

    Article  CAS  PubMed  Google Scholar 

  112. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13(2):95–109

    Article  CAS  PubMed  Google Scholar 

  113. Portier M, Zhang XG, Caron E, Lu ZY, Bataille R, Klein B (1993) gamma-Interferon in multiple myeloma: inhibition of interleukin-6 (IL-6)-dependent myeloma cell growth and downregulation of IL-6-receptor expression in vitro. Blood 81(11):3076–3082

    CAS  PubMed  Google Scholar 

  114. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605. doi:10.1038/35046102

    Article  CAS  PubMed  Google Scholar 

  115. Viel S, Charrier E, Marcais A, Rouzaire P, Bienvenu J, Karlin L, Salles G, Walzer T (2013) Monitoring NK cell activity in patients with hematological malignancies. Oncoimmunology 2(9):e26011. doi:10.4161/onci.26011

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  CAS  PubMed  Google Scholar 

  117. Bernal M, Garrido P, Jimenez P, Carretero R, Almagro M, Lopez P, Navarro P, Garrido F, Ruiz-Cabello F (2009) Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells. Hum Immunol 70(10):854–857. doi:10.1016/j.humimm.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  118. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G (2008) MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 105(4):1285–1290. doi:10.1073/pnas.0711293105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Perez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Martin-Nunez G, Galende J, Borrego D, Rodriguez MJ, Ortega F, Hernandez J, Moreno I, Dominguez M, Mateo G, San Miguel JF, Orfao A, Spanish Network on multiple m, Spanish Network of Cancer Research C (2005) Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 19(3):449–455. doi:10.1038/sj.leu.2403647

    Article  CAS  PubMed  Google Scholar 

  120. von Lilienfeld-Toal M, Frank S, Leyendecker C, Feyler S, Jarmin S, Morgan R, Glasmacher A, Marten A, Schmidt-Wolf IG, Brossart P, Cook G (2010) Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked. Cancer Immunol Immunother: CII 59(6):829–839. doi:10.1007/s00262-009-0807-3

    Article  CAS  Google Scholar 

  121. Fauriat C, Mallet F, Olive D, Costello RT (2006) Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 20(4):732–733. doi:10.1038/sj.leu.2404096

    Article  CAS  PubMed  Google Scholar 

  122. Mills KH, Cawley JC (1983) Abnormal monoclonal antibody-defined helper/suppressor T-cell subpopulations in multiple myeloma: relationship to treatment and clinical stage. Br J Haematol 53(2):271–275

    Article  CAS  PubMed  Google Scholar 

  123. Cook G, Campbell JD (1999) Immune regulation in multiple myeloma: the host-tumour conflict. Blood Rev 13(3):151–162. doi:10.1054/blre.1999.0111

    Article  CAS  PubMed  Google Scholar 

  124. Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461. doi:10.1111/j.1440-1711.2005.01371.x

    Article  CAS  PubMed  Google Scholar 

  125. Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hammerling GJ, Kyewski B, Hamann A, Umansky V, Schirrmacher V (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9(9):1151–1157. doi:10.1038/nm914

    Article  CAS  PubMed  Google Scholar 

  126. Raje N, Gong J, Chauhan D, Teoh G, Avigan D, Wu Z, Chen D, Treon SP, Webb IJ, Kufe DW, Anderson KC (1999) Bone marrow and peripheral blood dendritic cells from patients with multiple myeloma are phenotypically and functionally normal despite the detection of Kaposi’s sarcoma herpesvirus gene sequences. Blood 93(5):1487–1495

    CAS  PubMed  Google Scholar 

  127. Brown RD, Pope B, Murray A, Esdale W, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98(10):2992–2998

    Article  CAS  PubMed  Google Scholar 

  128. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, Fogli M, Ferri E, Della Cuna GR, Tura S, Baccarani M, Lemoli RM (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100(1):230–237

    Article  CAS  PubMed  Google Scholar 

  129. Brimnes MK, Svane IM, Johnsen HE (2006) Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma. Clin Exp Immunol 144(1):76–84. doi:10.1111/j.1365-2249.2006.03037.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Leone P, Berardi S, Frassanito MA, Ria R, De Re V, Cicco S, Battaglia S, Ditonno P, Dammacco F, Vacca A, Racanelli V (2015) Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing. Blood 126(12):1443–1451. doi:10.1182/blood-2015-01-623975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234

    Article  CAS  PubMed  Google Scholar 

  132. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, Bianchi G, Podar K, Tai YT, Mitsiades C, Raje N, Jaye DL, Kumar SK, Richardson P, Munshi N, Anderson KC (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16(4):309–323. doi:10.1016/j.ccr.2009.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Halapi E, Werner A, Wahlstrom J, Osterborg A, Jeddi-Tehrani M, Yi Q, Janson CH, Wigzell H, Grunewald J, Mellstedt H (1997) T cell repertoire in patients with multiple myeloma and monoclonal gammopathy of undetermined significance: clonal CD8+ T cell expansions are found preferentially in patients with a low tumor burden. Eur J Immunol 27(9):2245–2252. doi:10.1002/eji.1830270919

    Article  CAS  PubMed  Google Scholar 

  134. Dhodapkar MV, Krasovsky J, Olson K (2002) T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci USA 99(20):13009–13013. doi:10.1073/pnas.202491499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q (2002) Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 99(9):3280–3285

    Article  CAS  PubMed  Google Scholar 

  136. Dhodapkar MV, Krasovsky J, Osman K, Geller MD (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198(11):1753–1757. doi:10.1084/jem.20031030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D, Jagannath S, Zebroski HA, Simpson AJ, Ritter G, Durie B, Crowley J, Shaughnessy JD Jr, Scanlan MJ, Gure AO, Barlogie B, Dhodapkar MV (2007) Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 204(4):831–840. doi:10.1084/jem.20062387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Aklilu E, Gibson J, Ho PJ, Iland H, Fromm P, Woodland N, Nassif N, Hart D, Joshua DE (2013) Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J 3:e148. doi:10.1038/bcj.2013.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bogen B, Ruffini PA, Corthay A, Fredriksen AB, Froyland M, Lundin K, Rosjo E, Thompson K, Massaia M (2006) Idiotype-specific immunotherapy in multiple myeloma: suggestions for future directions of research. Haematologica 91(7):941–948

    CAS  PubMed  Google Scholar 

  140. Bogen B, Schenck K, Munthe LA, Dembic Z (2000) Deletion of idiotype (Id)-specific T cells in multiple myeloma. Acta Oncol 39(7):783–788

    Article  CAS  PubMed  Google Scholar 

  141. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, Williams D, Tayton-Martin HK, Ribeiro L, Holdich T, Yanovich S, Hardy N, Yared J, Kerr N, Philip S, Westphal S, Siegel DL, Levine BL, Jakobsen BK, Kalos M, June CH (2015) NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21(8):914–921. doi:10.1038/nm.3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK (1995) Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 86(8):3043–3049

    CAS  PubMed  Google Scholar 

  143. Sharma A, Khan R, Joshi S, Kumar L, Sharma M (2010) Dysregulation in T helper 1/T helper 2 cytokine ratios in patients with multiple myeloma. Leuk Lymphoma 51(5):920–927. doi:10.3109/10428191003699563

    Article  CAS  PubMed  Google Scholar 

  144. Frassanito MA, Cusmai A, Dammacco F (2001) Deregulated cytokine network and defective Th1 immune response in multiple myeloma. Clin Exp Immunol 125(2):190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ogawara H, Handa H, Yamazaki T, Toda T, Yoshida K, Nishimoto N, Al-ma’Quol WH, Kaneko Y, Matsushima T, Tsukamoto N, Nojima Y, Matsumoto M, Sawamura M, Murakami H (2005) High Th1/Th2 ratio in patients with multiple myeloma. Leuk Res 29(2):135–140. doi:10.1016/j.leukres.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  146. Murakami H, Ogawara H, Hiroshi H (2004) Th1/Th2 cells in patients with multiple myeloma. Hematology 9(1):41–45. doi:10.1080/10245330310001652437

    Article  CAS  PubMed  Google Scholar 

  147. Feng P, Yan R, Dai X, Xie X, Wen H, Yang S (2015) The alteration and clinical significance of Th1/Th2/Th17/Treg cells in patients with multiple myeloma. Inflammation 38(2):705–709. doi:10.1007/s10753-014-9980-4

    Article  CAS  PubMed  Google Scholar 

  148. Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS, Anderson KC, Munshi NC (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107(1):301–304. doi:10.1182/blood-2005-08-3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+CD25 high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107(10):3940–3949. doi:10.1182/blood-2005-09-3671

    Article  CAS  PubMed  Google Scholar 

  150. Giannopoulos K, Kaminska W, Hus I, Dmoszynska A (2012) The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer 106(3):546–552. doi:10.1038/bjc.2011.575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Braga WM, Atanackovic D, Colleoni GW (2012) The role of regulatory T cells and TH17 cells in multiple myeloma. Clin Dev Immunol 2012:293479. doi:10.1155/2012/293479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Shen CJ, Yuan ZH, Liu YX, Hu GY (2012) Increased numbers of T helper 17 cells and the correlation with clinicopathological characteristics in multiple myeloma. J Int Med Res 40(2):556–564

    Article  CAS  PubMed  Google Scholar 

  153. Di Lullo G, Marcatti M, Heltai S, Brunetto E, Tresoldi C, Bondanza A, Bonini C, Ponzoni M, Tonon G, Ciceri F, Bordignon C, Protti MP (2015) Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology 4(5):e1005460. doi:10.1080/2162402X.2015.1005460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. McEwen-Smith RM, Salio M, Cerundolo V (2015) The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol Res 3(5):425–435. doi:10.1158/2326-6066.CIR-15-0062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Song W, van der Vliet HJ, Tai YT, Prabhala R, Wang R, Podar K, Catley L, Shammas MA, Anderson KC, Balk SP, Exley MA, Munshi NC (2008) Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res 14(21):6955–6962. doi:10.1158/1078-0432.CCR-07-5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2008) Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112(4):1308–1316. doi:10.1182/blood-2008-04-149831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197(12):1667–1676. doi:10.1084/jem.20021650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123. doi:10.1038/ni.3298

    Article  CAS  PubMed  Google Scholar 

  159. Pratt G, Goodyear O, Moss P (2007) Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 138(5):563–579. doi:10.1111/j.1365-2141.2007.06705.x

    Article  CAS  PubMed  Google Scholar 

  160. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520. doi:10.1182/blood-2007-10-116129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jimenez-Zepeda VH, Reece DE, Trudel S, Chen C, Franke N, Winter A, Tiedemann R, Kukreti V (2015) Absolute lymphocyte count as predictor of overall survival for patients with multiple myeloma treated with single autologous stem cell transplant. Leuk Lymphoma. doi:10.3109/10428194.2014.1003057

    Google Scholar 

  162. Wolniak KL, Goolsby CL, Chen YH, Chenn A, Singhal S, LA JayeshMehta Peterson (2013) Expansion of a clonal CD8+CD57+ large granular lymphocyte population after autologous stem cell transplant in multiple myeloma. Am J Clin Pathol 139(2):231–241. doi:10.1309/AJCP1T0JPBLSLAQF

    Article  CAS  PubMed  Google Scholar 

  163. Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, Ferguson A, Emerling A, Luznik L, Matsui W, Powell J, Fuchs E, Rosner GL, Epstein C, Rudraraju L, Ambinder RF, Jones RJ, Pardoll D, Borrello I (2015) Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med 7(288):288ra278. doi:10.1126/scitranslmed.aaa7014

    Article  CAS  Google Scholar 

  164. Karp Leaf R, Cho HJ, Avigan D (2015) Immunotherapy for multiple myeloma, past, present, and future: monoclonal antibodies, vaccines, and cellular therapies. Curr Hematol Malig Rep. doi:10.1007/s11899-015-0283-0

    PubMed  Google Scholar 

  165. Wang L, Jin N, Schmitt A, Greiner J, Malcherek G, Hundemer M, Mani J, Hose D, Raab MS, Ho AD, Chen BA, Goldschmidt H, Schmitt M (2015) T cell-based targeted immunotherapies for patients with multiple myeloma. Int J Cancer J Int Cancer 136(8):1751–1768. doi:10.1002/ijc.29190

    Article  CAS  Google Scholar 

  166. Freeman LM, Lam A, Petcu E, Smith R, Salajegheh A, Diamond P, Zannettino A, Evdokiou A, Luff J, Wong PF, Khalil D, Waterhouse N, Vari F, Rice AM, Catley L, Hart DN, Vuckovic S (2011) Myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones include double-positive CD8+CD4+ T cells: evidence from myeloma-bearing mouse model. J Immunol 187(8):3987–3996. doi:10.4049/jimmunol.1101202

    Article  CAS  PubMed  Google Scholar 

  167. Bensinger W (2014) Allogeneic stem cell transplantation for multiple myeloma. Hematol Oncol Clin N Am 28(5):891–902. doi:10.1016/j.hoc.2014.06.001

    Article  Google Scholar 

  168. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Geyer SM, Iturria NL, Fonseca R, Hayman SR, Lust JA, Kyle RA, Greipp PR, Witzig TE, Rajkumar SV (2003) Response rate, durability of response, and survival after thalidomide therapy for relapsed multiple myeloma. Mayo Clin Proc 78(1):34–39. doi:10.4065/78.1.34

    Article  PubMed  Google Scholar 

  169. Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R, Lust JA, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2004) Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 18(3):624–627. doi:10.1038/sj.leu.2403285

    Article  CAS  PubMed  Google Scholar 

  170. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P, Muller G, Stirling DI, Anderson KC (2000) Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96(9):2943–2950

    CAS  PubMed  Google Scholar 

  171. Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ, Patterson RT, Stirling DI, Kaplan G (1999) Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 163(1):380–386

    CAS  PubMed  Google Scholar 

  172. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, Prince HM (2010) Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 24(1):22–32. doi:10.1038/leu.2009.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gorgun G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M, Cirstea D, Santo L, Hu Y, Tai YT, Nahar S, Mimura N, Fabre C, Raje N, Munshi N, Richardson P, Anderson KC (2010) Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116(17):3227–3237. doi:10.1182/blood-2010-04-279893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T, Vasir B, Arnason J, Tzachanis D, Zwicker JI, Joyce RM, Levine JD, Anderson KC, Kufe D, Avigan D (2013) Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother: CII 62(1):39–49. doi:10.1007/s00262-012-1308-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D, Treon SP, Richardson PG, Schlossman RL, Morgan GJ, Muller GW, Stirling DI, Anderson KC (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98(1):210–216

    Article  CAS  PubMed  Google Scholar 

  176. Jungkunz-Stier I, Zekl M, Stuhmer T, Einsele H, Seggewiss-Bernhardt R (2014) Modulation of natural killer cell effector functions through lenalidomide/dasatinib and their combined effects against multiple myeloma cells. Leuk Lymphoma 55(1):168–176. doi:10.3109/10428194.2013.794270

    Article  CAS  PubMed  Google Scholar 

  177. Zhu D, Corral LG, Fleming YW, Stein B (2008) Immunomodulatory drugs revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol Immunother: CII 57(12):1849–1859. doi:10.1007/s00262-008-0512-7

    Article  CAS  PubMed  Google Scholar 

  178. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128(2):192–203. doi:10.1111/j.1365-2141.2004.05286.x

    Article  CAS  PubMed  Google Scholar 

  179. Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD, Jagannath S, Dhodapkar MV (2006) Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 108(2):618–621. doi:10.1182/blood-2005-10-4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Minnema MC, van der Veer MS, Aarts T, Emmelot M, Mutis T, Lokhorst HM (2009) Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+Foxp3+ T cells. Leukemia 23(3):605–607. doi:10.1038/leu.2008.247

    Article  CAS  PubMed  Google Scholar 

  181. Spina F, Montefusco V, Crippa C, Citro A, Sammassimo S, Olivero B, Gentili S, Galli M, Guglielmelli T, Rossi D, Falcone AP, Grasso M, Patriarca F, De Muro M, Corradini P (2011) Lenalidomide can induce long-term responses in patients with multiple myeloma relapsing after multiple chemotherapy lines, in particular after allogeneic transplant. Leuk Lymphoma 52(7):1262–1270. doi:10.3109/10428194.2011.564695

    Article  CAS  PubMed  Google Scholar 

  182. Lioznov M, El-Cheikh J Jr, Hoffmann F, Hildebrandt Y, Ayuk F, Wolschke C, Atanackovic D, Schilling G, Badbaran A, Bacher U, Fehse B, Zander AR, Blaise D, Mohty M, Kroger N (2010) Lenalidomide as salvage therapy after allo-SCT for multiple myeloma is effective and leads to an increase of activated NK (NKp44(+)) and T (HLA-DR(+)) cells. Bone Marrow Transpl 45(2):349–353. doi:10.1038/bmt.2009.155

    Article  CAS  Google Scholar 

  183. Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P (2007) Proteasome inhibitors: antitumor effects and beyond. Leukemia 21(1):30–36. doi:10.1038/sj.leu.2404444

    Article  CAS  PubMed  Google Scholar 

  184. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M, Adams J, Kauffman M, Esseltine DL, Schenkein DP, Anderson KC (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172. doi:10.1111/j.1365-2141.2004.05188.x

    Article  CAS  PubMed  Google Scholar 

  185. Pellom ST Jr, Dudimah DF, Thounaojam MC, Sayers TJ, Shanker A (2015) Modulatory effects of bortezomib on host immune cell functions. Immunotherapy. doi:10.2217/imt.15.66

    PubMed  Google Scholar 

  186. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr, Barlogie B, van Rhee F (2008) Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111(3):1309–1317. doi:10.1182/blood-2007-03-078535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109(11):4839–4845. doi:10.1182/blood-2006-10-054221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, Richardson P, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419. doi:10.1016/j.ccr.2005.10.013

    Article  CAS  PubMed  Google Scholar 

  189. Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F, Brossart P (2006) Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 108(2):551–558. doi:10.1182/blood-2005-08-3494

    Article  CAS  PubMed  Google Scholar 

  190. Feng X, Yan J, Wang Y, Zierath JR, Nordenskjold M, Henter JI, Fadeel B, Zheng C (2010) The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol 47(14):2388–2396. doi:10.1016/j.molimm.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  191. Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R (2009) Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 113(24):6120–6127. doi:10.1182/blood-2008-11-190421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I, Riordan W, Sitcheran R, Wysocki C, Serody JS, Blazar BR, Sayers TJ, Murphy WJ (2004) Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 101(21):8120–8125. doi:10.1073/pnas.0401563101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sun K, Wilkins DE, Anver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR, Welniak LA, Murphy WJ (2005) Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 106(9):3293–3299. doi:10.1182/blood-2004-11-4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR (2006) NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 107(2):827–834. doi:10.1182/blood-2005-05-1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. McBride A, Klaus JO, Stockerl-Goldstein K (2015) Carfilzomib: a second-generation proteasome inhibitor for the treatment of multiple myeloma. Am J Health-Syst Pharm: AJHP 72(5):353–360. doi:10.2146/ajhp130281

    Article  CAS  PubMed  Google Scholar 

  196. Porrata LF, Litzow MR, Markovic SN (2001) Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc 76(4):407–412. doi:10.4065/76.4.407

    Article  CAS  PubMed  Google Scholar 

  197. Kroger N, Shaw B, Iacobelli S, Zabelina T, Peggs K, Shimoni A, Nagler A, Binder T, Eiermann T, Madrigal A, Schwerdtfeger R, Kiehl M, Sayer HG, Beyer J, Bornhauser M, Ayuk F, Zander AR, Marks DI, Clinical Trial Committee of the British Society of B, Marrow T, the German Cooperative Transplant G (2005) Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol 129(5):631–643. doi:10.1111/j.1365-2141.2005.05513.x

    Article  PubMed  CAS  Google Scholar 

  198. Shi J, Tricot G, Szmania S, Rosen N, Garg TK, Malaviarachchi PA, Moreno A, Dupont B, Hsu KC, Baxter-Lowe LA, Cottler-Fox M, Shaughnessy JD Jr, Barlogie B, van Rhee F (2008) Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 143(5):641–653. doi:10.1111/j.1365-2141.2008.07340.x

    Article  PubMed  PubMed Central  Google Scholar 

  199. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, Abonour R, Bakan C, Andre P, Efebera Y, Tiollier J, Caligiuri MA, Farag SS (2012) A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120(22):4324–4333. doi:10.1182/blood-2012-06-438028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Benson DM Jr, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, Efebera YA, Andre P, Zerbib R, Caligiuri MA (2015) A phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin Cancer Res 21(18):4055–4061. doi:10.1158/1078-0432.CCR-15-0304

    Article  CAS  PubMed  Google Scholar 

  201. Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, Zeng T, Huang H, Zhang X, Sun W, Man-Yuen Sze D, Yi Q, Hou J (2014) Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol 8(2):297–310. doi:10.1016/j.molonc.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  202. Richardson PG, Lonial S, Jakubowiak AJ, Harousseau JL, Anderson KC (2011) Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol 154(6):745–754. doi:10.1111/j.1365-2141.2011.08790.x

    Article  CAS  PubMed  Google Scholar 

  203. Laubach JP, Tai YT, Richardson PG, Anderson KC (2014) Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs 23(4):445–452. doi:10.1517/13543784.2014.889681

    Article  CAS  PubMed  Google Scholar 

  204. Starr P (2015) Elotuzumab, first-in-class monoclonal antibody immunotherapy, improves outcomes in patients with multiple myeloma. Am Health Drug Benefits 8(Spec Issue):17

    PubMed  PubMed Central  Google Scholar 

  205. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, Rice AG, van Abbema A, Wong M, Liu G, Zhan F, Dillon M, Chen S, Rhodes S, Fuh F, Tsurushita N, Kumar S, Vexler V, Shaughnessy JD Jr, Barlogie B, van Rhee F, Hussein M, Afar DE, Williams MB (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14(9):2775–2784. doi:10.1158/1078-0432.CCR-07-4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Collins SM, Bakan CE, Swartzel GD, Hofmeister CC, Efebera YA, Kwon H, Starling GC, Ciarlariello D, Bhaskar S, Briercheck EL, Hughes T, Yu J, Rice A, Benson DM Jr (2013) Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother: CII 62(12):1841–1849. doi:10.1007/s00262-013-1493-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133. doi:10.1056/NEJMoa1302369

    Article  CAS  PubMed  Google Scholar 

  208. Armand P (2015) Immune checkpoint blockade in hematologic malignancies. Blood 125(22):3393–3400. doi:10.1182/blood-2015-02-567453

    Article  CAS  PubMed  Google Scholar 

  209. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, Rotem-Yehudar R, Kufe D, Avigan D (2011) PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 34(5):409–418. doi:10.1097/CJI.0b013e31821ca6ce

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK, Greenfield CN, Porcu P, Devine SM, Rotem-Yehudar R, Lozanski G, Byrd JC, Caligiuri MA (2010) The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116(13):2286–2294. doi:10.1182/blood-2010-02-271874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jing W, Gershan JA, Weber J, Tlomak D, McOlash L, Sabatos-Peyton C, Johnson BD (2015) Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer 3(1):2. doi:10.1186/s40425-014-0043-z

    Article  PubMed  PubMed Central  Google Scholar 

  212. Murillo O, Arina A, Hervas-Stubbs S, Gupta A, McCluskey B, Dubrot J, Palazon A, Azpilikueta A, Ochoa MC, Alfaro C, Solano S, Perez-Gracia JL, Oyajobi BO, Melero I (2008) Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res 14(21):6895–6906. doi:10.1158/1078-0432.CCR-08-0285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lesokhin AM, Callahan MK, Postow MA, Wolchok JD (2015) On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci Transl Med 7(280):280sr281. doi:10.1126/scitranslmed.3010274

    Article  CAS  Google Scholar 

  214. Hoang MD, Jung SH, Lee HJ, Lee YK, Nguyen-Pham TN, Choi NR, Vo MC, Lee SS, Ahn JS, Yang DH, Kim YK, Kim HJ, Lee JJ (2015) Dendritic cell-based cancer immunotherapy against multiple myeloma: from bench to clinic. Chonnam Med J 51(1):1–7. doi:10.4068/cmj.2015.51.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  215. Maus MV, June CH (2014) CARTs on the road for myeloma. Clin Cancer Res 20(15):3899–3901. doi:10.1158/1078-0432.CCR-14-0721

    Article  PubMed  PubMed Central  Google Scholar 

  216. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.N. is supported by The Naito Foundation. M. J. S. is supported by a NH&MRC Australia Fellowship (628623) and Program Grant (1013667). C.G. is supported by a NH&MRC early career fellowship (1107417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Smyth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillerey, C., Nakamura, K., Vuckovic, S. et al. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell. Mol. Life Sci. 73, 1569–1589 (2016). https://doi.org/10.1007/s00018-016-2135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2135-z

Keywords

Navigation