Skip to main content
Log in

The p38α MAPK positively regulates osteoblast function and postnatal bone acquisition

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bone continuously remodels throughout life by coordinated actions of osteoclasts and osteoblasts. Abnormalities in either osteoclast or osteoblast functions lead to bone disorders. The p38 MAPK pathway has been shown to be essential in controlling osteoblast differentiation and skeletogenesis. Although p38α is the most abundant p38 member in osteoblasts, its specific individual contribution in regulating postnatal osteoblast activity and bone metabolism is unknown. To elucidate the specific role of p38α in regulating osteoblast function and bone homeostasis, we generated mice lacking p38α in differentiated osteoblasts. Osteoblast-specific p38a knockout mice were of normal weight and size. Despite non-significant bone alterations until 5 weeks of age, mutant mice demonstrated significant and progressive decrease in bone mineral density from that age. Adult mice deficient in p38a in osteoblasts displayed a striking reduction in cancellous bone volume at both axial and appendicular skeletal sites. At 6 months of age, trabecular bone volume was reduced by 62 % in those mice. Mutant mice also exhibited progressive decrease in cortical thickness of long bones. These abnormalities correlated with decreased endocortical and trabecular bone formation rate and reduced expressions of type 1 collagen, alkaline phosphatase, osteopontin and osteocalcin whereas bone resorption and osteoclasts remained unaffected. Finally, osteoblasts lacking p38α showed impaired marker gene expressions and defective mineralization in vitro. These findings indicate that p38α is an essential positive regulator of osteoblast function and postnatal bone formation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108

    Article  PubMed  CAS  Google Scholar 

  2. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  PubMed  CAS  Google Scholar 

  3. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signaling. Biochem J 429:403–417

    Article  PubMed  CAS  Google Scholar 

  4. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J (2003) Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18:2060–2068

    Article  PubMed  CAS  Google Scholar 

  5. Lee KS, Hong SH, Bae SC (2002) Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21:7156–7163

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1999) Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology 140:3177–3182

    Article  PubMed  CAS  Google Scholar 

  7. Rey A, Manen D, Rizzoli R, Ferrari SL, Caverzasio J (2007) Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 41:59–67

    Article  PubMed  CAS  Google Scholar 

  8. Caverzasio J, Manen D (2007) Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology 148:5323–5330

    Article  PubMed  CAS  Google Scholar 

  9. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371

    Article  PubMed  CAS  Google Scholar 

  10. Ulsamer A, Ortuño MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283:3816–3826

    Article  PubMed  CAS  Google Scholar 

  11. Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL, Ventura F (2010) p38 regulates expression of osteoblast-specific genes by phosphorylation of Osterix. J Biol Chem 285:31985–31994

    Article  PubMed  CAS  Google Scholar 

  12. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473

    Article  PubMed  CAS  Google Scholar 

  13. Zou W, Greenblatt MB, Shim JH, Kant S, Zhai B, Lotinun S, Brady N, Hu DZ, Gygi SP, Baron R, Davis RJ, Jones D, Glimcher LH (2011) MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J Clin Invest 121:4383–4392

    Article  PubMed  CAS  Google Scholar 

  14. Whitehouse CA, Waters S, Marchbank K, Horner A, McGowan NW, Jovanovic JV, Xavier GM, Kashima TG, Cobourne MT, Richards GO, Sharpe PT, Skerry TM, Grigoriadis AE, Solomon E (2010) Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci USA 107:12913–12918

    Article  PubMed  CAS  Google Scholar 

  15. Heinrichsdorff J, Luedde T, Perdiguero E, Nebreda AR, Pasparakis M (2008) p38alpha MAPK inhibits JNK activation and collaborates with IkappaB kinase 2 to prevent endotoxin-induced liver failure. EMBO Rep 9:1048–1054

    Article  PubMed  CAS  Google Scholar 

  16. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012

    Article  PubMed  CAS  Google Scholar 

  17. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116

    PubMed  CAS  Google Scholar 

  18. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL (2009) The matricellular protein periostin is required for SOST inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284:35939–35950

    Article  PubMed  CAS  Google Scholar 

  19. Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560

    Article  PubMed  CAS  Google Scholar 

  20. Canalis E (2010) Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab 95:1496–1504

    Article  PubMed  CAS  Google Scholar 

  21. Trivedi R, Goswami R, Chattopadhyay N (2010) Investigational anabolic therapies for osteoporosis. Expert Opin Investig Drugs 19:995–1005

    Article  PubMed  CAS  Google Scholar 

  22. Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol 165:1–10

    Article  PubMed  CAS  Google Scholar 

  23. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036

    Article  PubMed  CAS  Google Scholar 

  24. Baek WY, Lee MA, Jung JW, Kim SY, Akiyama H, de Crombrugghe B, Kim JE (2009) Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J Bone Miner Res 24:1055–1065

    Article  PubMed  CAS  Google Scholar 

  25. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117:387–398

    Article  PubMed  CAS  Google Scholar 

  26. Mak KK, Bi Y, Wan C, Chuang PT, Clemens T, Young M, Yang Y (2008) Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell 14:674–688

    Article  PubMed  CAS  Google Scholar 

  27. Baron R, Rawadi G, Roman–Roman S (2006) Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76:103–127

    Article  PubMed  CAS  Google Scholar 

  28. Zhao M, Harris SE, Horn D, Geng Z, Nishimura R, Mundy GR, Chen D (2002) Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 157:1049–1060

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T (2000) Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103:1085–1097

    Article  PubMed  CAS  Google Scholar 

  30. Tan X, Weng T, Zhang J, Wang J, Li W, Wan H, Lan Y, Cheng X, Hou N, Liu H, Ding J, Lin F, Yang R, Gao X, Chen D, Yang X (2007) Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci 120:2162–2170

    Article  PubMed  CAS  Google Scholar 

  31. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, Zhang YE (2005) Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121:101–113

    Article  PubMed  CAS  Google Scholar 

  32. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  33. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  PubMed  CAS  Google Scholar 

  34. Amizuka N, Karaplis AC, Henderson JE, Warshawsky H, Lipman ML, Matsuki Y, Ejiri S, Tanaka M, Izumi N, Ozawa H, Goltzman D (1996) Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 175:166–176

    Article  PubMed  CAS  Google Scholar 

  35. Richman C, Kutilek S, Miyakoshi N, Srivastava AK, Beamer WG, Donahue LR, Rosen CJ, Wergedal JE, Baylink DJ, Mohan S (2001) Postnatal and pubertal skeletal changes contribute predominantly to the differences in peak bone density between C3H/HeJ and C57BL/6J mice. J Bone Miner Res 16:386–397

    Article  PubMed  CAS  Google Scholar 

  36. Schieven GL (2009) The p38alpha kinase plays a central role in inflammation. Curr Top Med Chem 9:1038–1048

    Article  PubMed  CAS  Google Scholar 

  37. Mbalaviele G, Anderson G, Jones A, De Ciechi P, Settle S, Mnich S, Thiede M, Abu-Amer Y, Portanova J, Monahan J (2006) Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. J Pharmacol Exp Ther 317:1044–1053

    Article  PubMed  CAS  Google Scholar 

  38. Caverzasio J, Higgins L, Ammann P (2008) Prevention of trabecular bone loss induced by estrogen deficiency by a selective p38alpha inhibitor. J Bone Miner Res 23:1389–1397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sabina Troccaz and Pierre Apostolides for their expert technical assistance. We thank Professor Manolis Pasparakis for providing p38a f/f mice and Professor Thomas L. Clemens for Ocn-Cre mice. This work was supported by the Swiss National Science Foundation (310030-127638) and by the Novartis Foundation (Basel, Switzerland).

Conflict of interest

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Caverzasio.

Additional information

The authors declare that the experiments comply with the current laws of Switzerland in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thouverey, C., Caverzasio, J. The p38α MAPK positively regulates osteoblast function and postnatal bone acquisition. Cell. Mol. Life Sci. 69, 3115–3125 (2012). https://doi.org/10.1007/s00018-012-0983-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0983-8

Keywords

Navigation