Skip to main content
Log in

Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca2+]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SST:

Somatostatin

CST:

Cortistatin

sst:

Somatostatin receptor

TMD:

Transmembrane domain

HPT:

Hypothalamus

PIT:

Pituitary

DIO:

Diet-induced obesity

MT-hGHRH:

Metallothionein promoter-human growth hormone releasing hormone

SST-KO:

Somatostatin knock-out

3xHA:

3x hemagglutinin

qrtRT-PCR:

Quantitative real-time retrotranscriptase-polymerase chain reaction

References

  1. Gahete MD, Duran-Prado M, Luque RM, Martinez-Fuentes AJ, Vazquez-Martinez R, Malagon MM, Castaño JP (2008) Are somatostatin and cortistatin two siblings in regulating endocrine secretions? In vitro work ahead. Mol Cell Endocrinol 286:128–134

    Article  CAS  PubMed  Google Scholar 

  2. Luque RM, Park S, Kineman RD (2008) Role of endogenous somatostatin in regulating GH output under basal conditions and in response to metabolic extremes. Mol Cell Endocrinol 286:155–168

    Article  CAS  PubMed  Google Scholar 

  3. Moller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84

    Article  CAS  PubMed  Google Scholar 

  4. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  CAS  PubMed  Google Scholar 

  5. Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J (2008) Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 286:75–87

    Article  CAS  PubMed  Google Scholar 

  6. Broglio F, Grottoli S, Arvat E, Ghigo E (2008) Endocrine actions of cortistatin: in vivo studies. Mol Cell Endocrinol 286:123–127

    Article  CAS  PubMed  Google Scholar 

  7. de Lecea L (2008) Cortistatin: functions in the central nervous system. Mol Cell Endocrinol 286:88–95

    Article  PubMed  CAS  Google Scholar 

  8. de Lecea L, Castaño JP (2006) Cortistatin: not just another somatostatin analog. Nat Clin Pract Endocrinol Metab 2:356–357

    Article  PubMed  Google Scholar 

  9. de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381:242–245

    Article  PubMed  Google Scholar 

  10. Gonzalez-Rey E, Delgado M (2008) Emergence of cortistatin as a new immunomodulatory factor with therapeutic potential in immune disorders. Mol Cell Endocrinol 286:135–140

    Article  CAS  PubMed  Google Scholar 

  11. Castaño JP, Delgado-Niebla E, Duran-Prado M, Luque RM, Sanchez-Hormigo A, Gracia-Navarro F, Garcia-Navarro S, Kineman RD, Malagon MM (2005) New insights in the mechanism by which SRIF influences GH secretion. J Endocrinol Invest 28:10–13

    PubMed  Google Scholar 

  12. Patel YC, Panetta R, Escher E, Greenwood M, Srikant CB (1994) Expression of multiple somatostatin receptor genes in AtT-20 cells: evidence for a novel somatostatin-28 selective receptor subtype. J Biol Chem 269:1506–1509

    CAS  PubMed  Google Scholar 

  13. Siehler S, Nunn C, Hannon J, Feuerbach D, Hoyer D (2008) Pharmacological profile of somatostatin and cortistatin receptors. Mol Cell Endocrinol 286:26–34

    Article  CAS  PubMed  Google Scholar 

  14. Tallent M, Liapakis G, O’Carroll AM, Lolait SJ, Dichter M, Reisine T (1996) Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20. Neuroscience 71:1073–1081

    Article  CAS  PubMed  Google Scholar 

  15. Deghenghi R, Papotti M, Ghigo E, Muccioli G (2001) Cortistatin, but not somatostatin, binds to growth hormone secretagogue (GHS) receptors of human pituitary gland. J Endocrinol Invest 24:RC1–RC3

    CAS  PubMed  Google Scholar 

  16. Robas N, Mead E, Fidock M (2003) MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278:44400–44404

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Zhou YB, Zhang GG, Cai Y, Duan XH, Teng X, Song JQ, Shi Y, Tang CS, Yin XH, Qi YF (2010). Cortistatin attenuates vascular calcification in rats. Regul Pept 159: 35–43 (doi:10.1016/j.regpep.2009.09.005)

    Google Scholar 

  18. Bockaert J, Marin P, Dumuis A, Fagni L (2003) The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 546:65–72

    Article  CAS  PubMed  Google Scholar 

  19. Bockaert J, Roussignol G, Becamel C, Gavarini S, Joubert L, Dumuis A, Fagni L, Marin P (2004) GPCR-interacting proteins (GIPs): nature and functions. Biochem Soc Trans 32:851–855

    Article  CAS  PubMed  Google Scholar 

  20. Havt A, Schally AV, Halmos G, Varga JL, Toller GL, Horvath JE, Szepeshazi K, Koster F, Kovitz K, Groot K, Zarandi M, Kanashiro CA (2005) The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues. Proc Natl Acad Sci USA 102:17424–17429

    Article  CAS  PubMed  Google Scholar 

  21. Neill JD, Musgrove LC, Duck LW (2004) Newly recognized GnRH receptors: function and relative role. Trends Endocrinol Metab 15:383–392

    CAS  PubMed  Google Scholar 

  22. Rekasi Z, Czompoly T, Schally AV, Halmos G (2000) Isolation and sequencing of cDNAs for splice variants of growth hormone-releasing hormone receptors from human cancers. Proc Natl Acad Sci USA 97:10561–10566

    Article  CAS  PubMed  Google Scholar 

  23. Chen AM, Perrin MH, Digruccio MR, Vaughan JM, Brar BK, Arias CM, Lewis KA, Rivier JE, Sawchenko PE, Vale WW (2005) A soluble mouse brain splice variant of type 2alpha corticotropin-releasing factor (CRF) receptor binds ligands and modulates their activity. Proc Natl Acad Sci USA 102:2620–2625

    Article  CAS  PubMed  Google Scholar 

  24. Hasegawa H, Negishi M, Ichikawa A (1996) Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity. J Biol Chem 271:1857–1860

    Article  CAS  PubMed  Google Scholar 

  25. Miyata I, Shiota C, Ikeda Y, Oshida Y, Chaki S, Okuyama S, Inagami T (1999) Cloning and characterization of a short variant of the corticotropin-releasing factor receptor subtype from rat amygdala. Biochem Biophys Res Commun 256:692–696

    Article  CAS  PubMed  Google Scholar 

  26. Duran-Prado M, Gahete MD, Martinez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-Lopez P, Leal A, Schulz S, Gracia-Navarro F, Malagon MM, Castaño JP (2009) Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 94:2634–2643

    Article  CAS  PubMed  Google Scholar 

  27. Zeyda T, Diehl N, Paylor R, Brennan MB, Hochgeschwender U (2001) Impairment in motor learning of somatostatin null mutant mice. Brain Res 906:107–114

    Article  CAS  PubMed  Google Scholar 

  28. Hammer RE, Brinster RL, Rosenfeld MG, Evans RM, Mayo KE (1985) Expression of human growth hormone-releasing factor in transgenic mice results in increased somatic growth. Nature 315:413–416

    Article  CAS  PubMed  Google Scholar 

  29. Luque RM, Park S, Kineman RD (2007) Severity of the catabolic condition differentially modulates hypothalamic expression of growth hormone-releasing hormone in the fasted mouse: potential role of neuropeptide Y and corticotropin-releasing hormone. Endocrinology 148:300–309

    Article  CAS  PubMed  Google Scholar 

  30. Luque RM, Huang ZH, Shah B, Mazzone T, Kineman RD (2007) Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and circulating ghrelin levels in ob/ob mice. Am J Physiol Endocrinol Metab 292:E891–E899

    Article  CAS  PubMed  Google Scholar 

  31. Luque RM, Kineman RD (2006) Impact of obesity on the growth hormone axis: evidence for a direct inhibitory effect of hyperinsulinemia on pituitary function. Endocrinology 147:2754–2763

    Article  CAS  PubMed  Google Scholar 

  32. Luque RM, Gahete MD, Hochgeschwender U, Kineman RD (2006) Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways. Am J Physiol Endocrinol Metab 291:E395–E403

    Article  CAS  PubMed  Google Scholar 

  33. Luque RM, Kineman RD (2007) Gender-dependent role of endogenous somatostatin in regulating growth hormone-axis function in mice. Endocrinology 148:5998–6006

    Article  CAS  PubMed  Google Scholar 

  34. Luque RM, Soares BS, Peng XD, Krishnan S, Cordoba-Chacon J, Frohman LA, Kineman RD (2009) Use of the metallothionein promoter-human growth hormone-releasing hormone (GHRH) mouse to identify regulatory pathways that suppress pituitary somatotrope hyperplasia and adenoma formation due to GHRH-receptor hyperactivation. Endocrinology 150:3177–3185

    Article  CAS  PubMed  Google Scholar 

  35. Martinez-Fuentes AJ, Moreno-Fernandez J, Vazquez-Martinez R, Duran-Prado M, de la Riva A, Tena-Sempere M, Dieguez C, Jimenez-Reina L, Webb SM, Pumar A, Leal-Cerro A, Benito-Lopez P, Malagon MM, Castaño JP (2006) Ghrelin is produced by and directly activates corticotrope cells from adrenocorticotropin-secreting adenomas. J Clin Endocrinol Metab 91:2225–2231

    Article  CAS  PubMed  Google Scholar 

  36. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  37. Duran-Prado M, Bucharles C, Gonzalez BJ, Vazquez-Martinez R, Martinez-Fuentes AJ, Garcia-Navarro S, Rhodes SJ, Vaudry H, Malagon MM, Castaño JP (2007) Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 148:411–421

    Article  CAS  PubMed  Google Scholar 

  38. Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L (2004) Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 145:393–400

    Article  CAS  PubMed  Google Scholar 

  39. Kineman RD, Gahete MD, Luque RM (2007) Identification of a mouse ghrelin gene transcript that contains intron 2 and is regulated in the pituitary and hypothalamus in response to metabolic stress. J Mol Endocrinol 38:511–521

    Article  CAS  PubMed  Google Scholar 

  40. Luque RM, Kineman RD, Tena-Sempere M (2007) Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 148:4601–4611

    Article  CAS  PubMed  Google Scholar 

  41. Dalm VA, Hofland LJ, Lamberts SW (2008) Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol Cell Endocrinol 286:262–277

    Article  CAS  PubMed  Google Scholar 

  42. Hofland LJ (2008) Somatostatin and somatostatin receptors in Cushing’s disease. Mol Cell Endocrinol 286:199–205

    Article  CAS  PubMed  Google Scholar 

  43. Lania A, Mantovani G, Spada A (2008) Genetic abnormalities of somatostatin receptors in pituitary tumors. Mol Cell Endocrinol 286:180–186

    Article  CAS  PubMed  Google Scholar 

  44. Schonbrunn A (2008) Selective agonism in somatostatin receptor signaling and regulation. Mol Cell Endocrinol 286:35–39

    Article  CAS  PubMed  Google Scholar 

  45. Siehler S (2008) Cell-based assays in GPCR drug discovery. Biotechnol J 3:471–483

    Article  CAS  PubMed  Google Scholar 

  46. Kilpatrick GJ, Dautzenberg FM, Martin GR, Eglen RM (1999) 7TM receptors: the splicing on the cake. Trends Pharmacol Sci 20:294–301

    Article  CAS  PubMed  Google Scholar 

  47. Leung PK, Chow KB, Lau PN, Chu KM, Chan CB, Cheng CH, Wise H (2007) The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor. Cell Signal 19:1011–1022

    Article  CAS  PubMed  Google Scholar 

  48. Hawrylyshyn KA, Michelotti GA, Coge F, Guenin SP, Schwinn DA (2004) Update on human alpha1-adrenoceptor subtype signaling and genomic organization. Trends Pharmacol Sci 25:449–455

    Article  CAS  PubMed  Google Scholar 

  49. McWilliams DF, Watson SA, Crosbee DM, Michaeli D, Seth R (1998) Coexpression of gastrin and gastrin receptors (CCK-B and delta CCK-B) in gastrointestinal tumour cell lines. Gut 42:795–798

    Article  CAS  PubMed  Google Scholar 

  50. Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77:1877–1879

    Article  CAS  PubMed  Google Scholar 

  51. Tallent M, Dichter MA, Reisine T (1996) Evidence that a novel somatostatin receptor couples to an inward rectifier potassium current in AtT-20 cells. Neuroscience 73:855–864

    Article  CAS  PubMed  Google Scholar 

  52. Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28:4364–4375

    Article  CAS  PubMed  Google Scholar 

  53. Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA (2008) Identification of motifs that function in the splicing of non-canonical introns. Genome Biol 9:R97

    Article  PubMed  CAS  Google Scholar 

  54. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  55. Smith DJ, Query CC, Konarska MM (2008) “Nought may endure but mutability”: spliceosome dynamics and the regulation of splicing. Mol Cell 30:657–666

    Article  CAS  PubMed  Google Scholar 

  56. Clark F, Thanaraj TA (2002) Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum Mol Genet 11:451–464

    Article  CAS  PubMed  Google Scholar 

  57. Fehlmann D, Langenegger D, Schuepbach E, Siehler S, Feuerbach D, Hoyer D (2000) Distribution and characterisation of somatostatin receptor mRNA and binding sites in the brain and periphery. J Physiol Paris 94:265–281

    Article  CAS  PubMed  Google Scholar 

  58. Reubi JC, Waser B, Liu Q, Laissue JA, Schonbrunn A (2000) Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: membranous versus intracellular location. J Clin Endocrinol Metab 85:3882–3891

    Article  CAS  PubMed  Google Scholar 

  59. Stroh T, Sarret P, Tannenbaum GS, Beaudet A (2006) Immunohistochemical distribution and subcellular localization of the somatostatin receptor subtype 1 (sst1) in the rat hypothalamus. Neurochem Res 31:247–257

    Article  CAS  PubMed  Google Scholar 

  60. Hukovic N, Panetta R, Kumar U, Rocheville M, Patel YC (1998) The cytoplasmic tail of the human somatostatin receptor type 5 is crucial for interaction with adenylyl cyclase and in mediating desensitization and internalization. J Biol Chem 273:21416–21422

    Article  CAS  PubMed  Google Scholar 

  61. Jacobs S, Schulz S (2008) Intracellular trafficking of somatostatin receptors. Mol Cell Endocrinol 286:58–62

    Article  CAS  PubMed  Google Scholar 

  62. Tulipano G, Schulz S (2007) Novel insights in somatostatin receptor physiology. Eur J Endocrinol 156(Suppl 1):S3–S11

    Article  CAS  PubMed  Google Scholar 

  63. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55:910–920

    CAS  PubMed  Google Scholar 

  64. Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  CAS  PubMed  Google Scholar 

  65. Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S (1993) Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365:166–170

    Article  CAS  PubMed  Google Scholar 

  66. Wente W, Stroh T, Beaudet A, Richter D, Kreienkamp HJ (2005) Interactions with PDZ domain proteins PIST/GOPC and PDZK1 regulate intracellular sorting of the somatostatin receptor subtype 5. J Biol Chem 280:32419–32425

    Article  CAS  PubMed  Google Scholar 

  67. Peverelli E, Lania AG, Mantovani G, Beck-Peccoz P, Spada A (2009) Characterization of intracellular signaling mediated by human somatostatin receptor 5: role of the DRY motif and the third intracellular loop. Endocrinology 150:3169–3176

    Article  CAS  PubMed  Google Scholar 

  68. Akbar M, Okajima F, Tomura H, Majid MA, Yamada Y, Seino S, Kondo Y (1994) Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1–5, in transfected COS-7 cells. FEBS Lett 348:192–196

    Article  CAS  PubMed  Google Scholar 

  69. Ben-Shlomo A, Wawrowsky KA, Proekt I, Wolkenfeld NM, Ren SG, Taylor J, Culler MD, Melmed S (2005) Somatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion. J Biol Chem 280:24011–24021

    Article  CAS  PubMed  Google Scholar 

  70. Carruthers AM, Warner AJ, Michel AD, Feniuk W, Humphrey PP (1999) Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Galphas proteins. Br J Pharmacol 126:1221–1229

    Article  CAS  PubMed  Google Scholar 

  71. Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P (2003) Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1-sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology 44:672–685

    Article  CAS  PubMed  Google Scholar 

  72. Park S, Sohn S, Kineman RD (2004) Fasting-induced changes in the hypothalamic-pituitary-GH axis in the absence of GH expression: lessons from the spontaneous dwarf rat. J Endocrinol 180:369–378

    Article  CAS  PubMed  Google Scholar 

  73. Ishikawa M, Mizobuchi M, Takahashi H, Bando H, Saito S (1997) Somatostatin release as measured by in vivo microdialysis: circadian variation and effect of prolonged food deprivation. Brain Res 749:226–231

    Article  CAS  PubMed  Google Scholar 

  74. Tannenbaum GS, Epelbaum J, Colle E, Brazeau P, Martin JB (1978) Antiserum to somatostatin reverses starvation-induced inhibition of growth hormone but not insulin secretion. Endocrinology 102:1909–1914

    Article  CAS  PubMed  Google Scholar 

  75. Zhou X, De Schepper J, Vergeylen A, Luis O, Delhase M, Hooghe-Peters EL (1997) Cafeteria diet-induced obese rats have an increased somatostatin protein content and gene expression in the periventricular nucleus. J Endocrinol Invest 20:264–269

    CAS  PubMed  Google Scholar 

  76. Luque RM, Park S, Peng XD, Delgado E, Gracia-Navarro F, Kineman RD, Malagon MM, Castaño JP (2004) Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA. J Mol Endocrinol 32:437–448

    Article  CAS  PubMed  Google Scholar 

  77. Ramirez JL, Mouchantaf R, Kumar U, Otero Corchon V, Rubinstein M, Low MJ, Patel YC (2002) Brain somatostatin receptors are up-regulated in somatostatin-deficient mice. Mol Endocrinol 16:1951–1963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknownledgements

This work is supported by grants from Research Grants BFU2007-60180/BFI and BFU2008-01136/BFI (Ministerio de Ciencia e Innovación), BIO-139 and CTS-1705 (Junta de Andalucía), Ayudas predoctorales de formación en investigación en salud del Fondo de Investigación Sanitaria (FIS, ISCIII: FI06/00804; to JCC), Programa Nacional de becas de FPU (FPU-AP20052473, to MDG) and Programa Ramón y Cajal del Ministerio de Educación y Ciencia (RYC-2007-00186, to RML), Spain, NIDDK 30677 and VA Merit (to RDK) and IPSEN Pharmaceuticals (to J.P.C). CIBER is an initiative of Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Spain. The authors would like to thank Dr. Ute Hochgeschwender (Oklahoma Medical Research Foundation, Oklahoma City, OK), who generously provided us with the original SST-KO mice, Dr. Ralph L. Brinster (University of Pennsylvania, Philadelphia PA) for the original MT-hGHRH transgenic mice and Dr. Belsham (University of Toronto, Canada) for kind provision of hypothalamic N6 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justo P. Castaño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (PPT 1356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Córdoba-Chacón, J., Gahete, M.D., Duran-Prado, M. et al. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell. Mol. Life Sci. 67, 1147–1163 (2010). https://doi.org/10.1007/s00018-009-0240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0240-y

Keywords

Navigation