Skip to main content
Log in

C-Reactive Protein Levels and Vitamin D Receptor Polymorphisms as Markers in Predicting Cachectic Syndrome in Cancer Patients

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objective: In patients with advanced cancer, cachexia correlates with low performance status and poor quality of life. In addition, cachexia may be associated with reduced response to chemo-radiotherapy and a poor prognosis in cancer patients. Nearly all forms of cachexia are closely associated with chronic inflammation and elevated levels of inflammatory and pro-inflammatory circulating factors, including C-reactive protein (CRP), which is considered a valid laboratory and clinical marker. Among the different pathways involved in the production of inflammatory cytokines and chemokines, the vitamin D-vitamin D receptor (VDR) axis plays a fundamental role.

In this study, we explore the possible association between CRP and key factors pertaining to the vitamin D axis — in particular, VDR gene polymorphisms — in cancer patients with cachexia. Although certain tumor types are more commonly associated with cachexia, even within the same tumor type there are significant differences in the extent and duration of cachexia. Such variations may be due to polymorphisms of the VDR gene that could lead to cachexia-prone genotypes or to cachexia-resistant genotypes. Identification of such genotypes could be very helpful in the management of cancer patients.

Methods: Forty-three cancer patients were recruited by the Nutritional Unit of the Prato Hospital. Data on age, gender, type of cancer, stage of cancer, and nutritional assessment, as well as transferrin, ferritin, albumin, and CRP levels, were collected. Genomic DNA was extracted from peripheral blood leukocytes and amplified by polymerase chain reaction. BsmI, ApaI, TaqI, and FokI polymorphisms of the VDR gene were investigated using the respective restriction enzymes. For the different VDR polymorphisms, the absence or presence of the restriction sites were designated with capital or small letters, respectively. For example, for the BsmI polymorphism, the presence of the undigested fragment identified the B allele, whereas the presence of the digested fragment identified the b allele.

Results: Cancer patients with cachexia have higher CRP levels compared with non-cachectic cancer patients, independently from the genotype. In cachectic patients, the presence of specific VDR BsmI and TaqI alleles was associated with higher CRP levels. In particular, the VDR b and T alleles were more frequent in cachectic cancer patients with elevated CRP levels than in cachectic patients with normal CRP levels.

Conclusion: From these results, we hypothesize that there is an association between BsmI and TaqI VDR gene polymorphisms and the cachectic syndrome. In particular, we propose that in cancer patients, the concomitance of b and T alleles with elevated CRP levels may represent an early clinical predictor for the development of a more aggressive form of cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1
Fig. 2
Table IV

Similar content being viewed by others

References

  1. Tan BH, Ross JA, Kaasa S, et al. Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review. J Genet 2011 Apr; 90(1): 165–77

    Article  PubMed  Google Scholar 

  2. Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer 2002 Nov; 2(11): 862–71

    Article  PubMed  CAS  Google Scholar 

  3. Maltoni M, Caraceni A, Brunelli C, et al. Prognostic factors in advanced cancer patients: evidence-based clinical recommendations. A study by the Steering Committee of the European Association for Palliative Care. J Clin Oncol 2005 Sep; 23(25): 6240–8

    Article  PubMed  Google Scholar 

  4. Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol 2010 Mar; 26(2): 146–51

    Article  PubMed  Google Scholar 

  5. Tan BH, Deans DA, Skipworth RJ, et al. Biomarkers for cancer cachexia: is there also a genetic component to cachexia? Support Care Cancer 2008 Mar; 16(3): 229–34

    Article  PubMed  CAS  Google Scholar 

  6. Tan BH, Fearon KC. Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care 2008 Jul; 11(4): 400–7

    Article  PubMed  Google Scholar 

  7. MacDonald N, Easson AM, Mazurak VC, et al. Understanding and managing cancer cachexia. J Am Coll Surg 2003 Jul; 197(1): 143–61

    Article  PubMed  Google Scholar 

  8. Evans WJ, Morley JE, Argilés J, et al. Cachexia: a new definition. Clin Nutr 2008 Dec; 27(6): 793–9

    Article  PubMed  CAS  Google Scholar 

  9. Mantovani G, Maccio A, Mura L, et al. Serum levels of leptin and pro-inflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med (Berl) 2000; 78(10): 554–61

    Article  CAS  Google Scholar 

  10. Associazione Italiana di Oncologia Medica [AIOM]. Linee guida: trattamento e prevenzione della cachessia neoplastica. Milan: AIOM, 2007

    Google Scholar 

  11. Beck SA, Tisdale MJ. Production of lipolytic and proteolytic factors by a murine tumor-producing cachexia in the host. Cancer Res 1987 Nov 15; 47(22): 5919–23

    PubMed  CAS  Google Scholar 

  12. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009 Apr; 89(2): 381–410

    Article  PubMed  CAS  Google Scholar 

  13. Todorov P, Cariuk P, McDevitt T, et al. Characterization of a cancer cachectic factor. Nature 1996 Feb 22; 379(6567): 739–42

    Article  PubMed  CAS  Google Scholar 

  14. Skipworth RJ, Stewart GD, Dejong CH, et al. Pathophysiology of cancer cachexia: much more than host-tumour interaction? Clin Nutr 2007 Dec; 26(6): 667–76

    Article  PubMed  CAS  Google Scholar 

  15. Lorite MJ, Cariuk P, Tisdale MJ. Induction of muscle protein degradation by a tumour factor. Br J Cancer 1997; 76(8): 1035–40

    Article  PubMed  CAS  Google Scholar 

  16. Argilés JM, Busquets S, López-Soriano FJ. The pivotal role of cytokines in muscle wasting during cancer. Int J Biochem Cell Biol 2005 Oct; 37(10): 2036–46

    Article  PubMed  Google Scholar 

  17. Rebeca R, Bracht L, Noleto GR, et al. Production of cachexia mediators by Walker 256 cells from ascitic tumors. Cell Biochem Funct 2008 Aug; 26(6): 731–8

    Article  PubMed  CAS  Google Scholar 

  18. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, et al. Impact of weight loss on circulating IL-1, IL-6, IL-8, TNF-a, VEGF-A, VEGF-C and midkine in gastroesophageal cancer patients. Clin Biochem 2007 Dec; 40(18): 1353–60

    Article  PubMed  CAS  Google Scholar 

  19. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999 Feb 11; 340(6): 448–54

    Article  PubMed  CAS  Google Scholar 

  20. Falconer JS, Fearon KC, Ross JA, et al. Acute phase protein response and survival duration of patients with pancreatic cancer. Cancer 1995 Apr 15; 75(8): 2077–82

    Article  PubMed  CAS  Google Scholar 

  21. Falconer JS, Fearon KC, Plester CE, et al. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 1994 Apr; 219(4): 325–31

    Article  PubMed  CAS  Google Scholar 

  22. Argilés JM, Busquets S, López-Soriano FJ. Cytokines in the pathogenesis of cancer cachexia. Curr Opin Clin Nutr Metab Care 2003 Jul; 6(4): 401–6

    PubMed  Google Scholar 

  23. Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep 2002 May; 4(3): 250–4

    Article  PubMed  Google Scholar 

  24. Wigmore SJ, Plester CE, Ross JA, et al. Contribution of anorexia and hyper-metabolism to weight loss in anicteric patients with pancreatic cancer. Br J Surg 1997 Feb; 84(2): 196–7

    Article  PubMed  CAS  Google Scholar 

  25. Scott HR, McMillan DC, Brown DJ, et al. A prospective study of the impact of weight loss and the systemic inflammatory response on quality of life in patients with inoperable non-small cell lung cancer. Lung Cancer 2003 Jun; 40(3): 295–9

    Article  PubMed  Google Scholar 

  26. Deans DA, Tan BH, Wigmore SJ, et al. The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br J Cancer 2009 Jan 13; 100(1): 63–9

    Article  PubMed  CAS  Google Scholar 

  27. Deans C, Wigmore SJ. Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care 2005 May; 8(3): 265–9

    Article  PubMed  CAS  Google Scholar 

  28. Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract. Epub 2011 Jun 13

  29. Schena FP. Management of patients with chronic kidney disease. Intern Emerg Med 2011 Oct; 6(Suppl. 1): 77–83

    Article  PubMed  Google Scholar 

  30. Sundar IK, Rahman I. Vitamin D and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol 2011; 2: 50

    Article  PubMed  Google Scholar 

  31. Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis. J Clin Periodontol 2006 Aug; 33(8): 524–8

    Article  PubMed  CAS  Google Scholar 

  32. Cutolo M, Pizzorni C, Sulli A. Vitamin D endocrine system involvement in autoimmune rheumatic diseases. Autoimmun Rev 2011 Dec; 11(2): 84–7

    Article  PubMed  CAS  Google Scholar 

  33. Pacini S, Punzi T, Gulisano M, et al. Vitamin D receptor alleles and C-reactive protein in hemodialysis patients. Ital J Anat Embryol 2008 Jan–Mar; 113(1): 55–62

    PubMed  Google Scholar 

  34. Tachi Y, Shimpuku H, Nosaka Y, et al. Vitamin D receptor gene polymorphism is associated with chronic periodontitis. Life Sci 2003 Nov 14; 73(26): 3313–21

    Article  PubMed  CAS  Google Scholar 

  35. Helming L, Böse J, Ehrchen J, et al. 1alpha,25-dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 2005 Dec 15; 106(13): 4351–8

    Article  PubMed  CAS  Google Scholar 

  36. Gauzzi MC, Purificato C, Donato K, et al. Suppressive effect of 1 alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J Immunol 2005 Jan 1; 174(1): 270–6

    PubMed  CAS  Google Scholar 

  37. Almerighi C, Sinistro A, Cavazza A, et al. 1Alpha,25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine 2009 Mar; 45(3): 190–7

    Article  PubMed  CAS  Google Scholar 

  38. Dickie LJ, Church LD, Coulthard LR, et al. Vitamin D3 down-regulates intracellular Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 2010 Aug; 49(8): 1466–71

    Article  CAS  Google Scholar 

  39. Ward KA, Das G, Berry JL, et al. Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab 2009 Feb; 94(2): 559–63

    Article  PubMed  CAS  Google Scholar 

  40. Dawson-Hughes B. Serum 25-hydroxyvitamin D and muscle atrophy in the elderly. Proc Nutr Soc 2011 Nov; 1: 1–4

    Google Scholar 

  41. Stockton KA, Kandiah DA, Paratz JD, et al. Fatigue, muscle strength and vitamin D status in women with systemic lupus erythematosus compared to healthy controls. Lupus 2012; 21(3): 271–8

    Article  PubMed  CAS  Google Scholar 

  42. Guillot X, Semerano L, Saidenberg-Kermanac’h N, et al. Vitamin D and inflammation. Joint Bone Spine 2010 Dec; 77(6): 552–7

    Article  PubMed  CAS  Google Scholar 

  43. Köstner K, Denzer N, Müller CS, et al. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res 2009 Sep; 29(9): 3511–36

    PubMed  Google Scholar 

  44. Raimondi S, Johansson H, Maisonneuve P, et al. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009 Jul; 30(7): 1170–80

    Article  PubMed  CAS  Google Scholar 

  45. Chen L, Davey Smith G, Evans DM, et al. Genetic variants in the vitamin D receptor are associated with advanced prostate cancer at diagnosis: findings from the prostate testing for cancer and treatment study and systematic review. Cancer Epidemiol Biomarkers Prev 2009 Nov; 18(11): 2874–81

    Article  PubMed  CAS  Google Scholar 

  46. Rucević I, Barisić-Drusko V, Glavas-Obrovac L, et al. Vitamin D endocrine system and psoriasis vulgaris: review of the literature. Acta Dermatovenerol Croat 2009; 17(3): 187–92

    PubMed  Google Scholar 

  47. Bid HK, Mishra DK, Mittal RD. Vitamin-D receptor (VDR) gene (Fok-I, Taq-I & Apa-I) polymorphisms in healthy individuals from North Indian population. Asian Pac J Cancer Prev 2005 Apr–Jun; 6(2): 147–52

    PubMed  Google Scholar 

  48. Gough A, Sambrook P, Devlin J, et al. Effect of vitamin D receptor gene alleles on bone loss in early rheumatoid arthritis. J Rheumatol 1998 May; 25(5): 864–8

    PubMed  CAS  Google Scholar 

  49. Hughes DJ, McManus R, Neary P, et al. Common variation in the vitamin D receptor gene and risk of inflammatory bowel disease in an Irish case-control study. Eur J Gastroenterol Hepatol 2011 Sep; 23(9): 807–12

    Article  PubMed  CAS  Google Scholar 

  50. Simmons JD, Mullighan C, Welsh KI, et al. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut 2000 Aug; 47(2): 211–4

    Article  PubMed  CAS  Google Scholar 

  51. Kalantar-Zadeh K, McAllister CJ, Lehn RS, et al. Effect of malnutrition-inflammation complex syndrome on EPO hyporesponsiveness in maintenance hemodialysis patients. Am J Kidney Dis 2003 Oct; 42(4): 761–73

    Article  PubMed  Google Scholar 

  52. Argilés JM, Busquets S, Felipe A, et al. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int J Biochem Cell Biol 2005 May; 37(5): 1084–104

    Article  PubMed  Google Scholar 

  53. Klampfer L. Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets 2011 May; 11(4): 451–64

    Article  PubMed  CAS  Google Scholar 

  54. Penna F, Minero VG, Costamagna D, et al. Anti-cytokine strategies for the treatment of cancer-related anorexia and cachexia. Expert Opin Biol Ther 2010 Aug; 10(8): 1241–50

    Article  PubMed  CAS  Google Scholar 

  55. Lee S, Choe JW, Kim HK, et al. High-sensitivity C-reactive protein and cancer. J Epidemiol 2011 May 5; 21(3): 161–8

    Article  PubMed  CAS  Google Scholar 

  56. Kemik O, Kemik AS, Begenik H, et al. The relationship among acute-phase response proteins, cytokines, and hormones in various gastrointestinal cancer types patients with cachectic. Hum Exp Toxicol 2012 Feb; 31(2): 117–25

    Article  PubMed  CAS  Google Scholar 

  57. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, et al. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin Chem Lab Med 2008; 46(3): 359–64

    Article  PubMed  CAS  Google Scholar 

  58. Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol 2011 Feb 10; 51: 311–36

    Article  PubMed  CAS  Google Scholar 

  59. Vanoirbeek E, Krishnan A, Eelen G, et al. The anti-cancer and anti-inflammatory actions of 1,25(OH)2 D3. Best Pract Res Clin Endocrinol Metab 2011 Aug; 25(4): 593–604

    Article  PubMed  CAS  Google Scholar 

  60. Matthews D, LaPorta E, Zinser GM, et al. Genomic vitamin D signaling in breast cancer: insights from animal models and human cells. J Steroid Biochem Mol Biol 2010 Jul; 121(1–2): 362–7

    Article  PubMed  CAS  Google Scholar 

  61. Uitterlinden AG, Fang Y, Van Meurs JB, et al. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004 Sep 1; 338(2): 143–56

    Article  PubMed  CAS  Google Scholar 

  62. Saito M, Eiraku N, Usuku K, et al. ApaI polymorphism of vitamin D receptor gene is associated with susceptibility to HTLV-1-associated myelopathy/ tropical spastic paraparesis in HTLV-1 infected individuals. J Neurol Sci 2005 May 15; 232(1–2): 29–35

    Article  PubMed  CAS  Google Scholar 

  63. Purdue MP, Lan Q, Kricker A, et al. Vitamin D receptor gene polymorphisms and risk of non-Hodgkin’s lymphoma. Haematologica 2007 Aug; 92(8): 1145–6

    Article  PubMed  Google Scholar 

  64. Dayangac-Erden D, Karaduman A, Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients. Arch Dermatol Res 2007 Dec; 299(10): 487–91

    Article  PubMed  CAS  Google Scholar 

  65. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol 2005 Feb; 20(2): 249–55

    Article  PubMed  CAS  Google Scholar 

  66. Solheim TS, Fayers PM, Fladvad T, et al. Is there a genetic cause for cancer cachexia? A clinical validation study in 1797 patients. Br J Cancer 2011 Oct 11; 105(8): 1244–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research project was subsidized by the University of Firenze (Progetti di Ricerca di Ateneo, ex 60%), by the Italian Ministry of Health (Progetto Strategico La Medicina di genere come obiettivo strategico per la sanita’ pubblica: l’appropriatezza della cura per la tutela della salute della donna), and by a grant from PRIN 2009 to Marco Ruggiero and Stefania Pacini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Punzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punzi, T., Fabris, A., Morucci, G. et al. C-Reactive Protein Levels and Vitamin D Receptor Polymorphisms as Markers in Predicting Cachectic Syndrome in Cancer Patients. Mol Diagn Ther 16, 115–124 (2012). https://doi.org/10.1007/BF03256436

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256436

Keywords

Navigation