Skip to main content
Log in

Caspase inhibitors in prevention of apoptosis

Caspaseinhibitoren zur Prävention von Apoptose

  • Published:
Herz Aims and scope Submit manuscript

Abstract

Apoptosis, a morphological distinct form of programmed cell death, is a crucial process during development, the maintenance of cell homeostasis and the regulation of the immune system. A variety of diseases have been found to correlate with physiological apoptosis including cancer, autoimmune disease, viral infection and degenerative disorders.

Although very different signals initiate apoptosis, the phenotype of apoptosis is surprisingly similar even in different cell types suggesting that the final stages of apoptotic death are highly conserved. The execution of the death program is coordinated by a recently identified class of cysteine proteases termed caspases.

The finding that caspases are mainly involved in regulation of this conserved part of the death program has boosted the search for caspase inhibitors which might offer a therapeutic approach to treat apoptitic disorders. Synthetic peptide inhibitors have been developed which exhibit some selectivity for the different caspases. In the last years several natural inhibitors have been discovered which either prevent caspase activation or caspase activity. This review will present the recent advances and discuss the potential of caspase inhibitors as future therapeutics.

Zusammenfassung

Apoptose, eine morphologisch charakteristische Form des programmierten Zelltods, spielt eine bedeutende Rolle während der Entwicklung, bei der Aufrechterhaltung der Zellhomöostase und bei der Regulation des Immunsystems. Eine Reihe von Krankheiten, wie Krebs, Autoimmunerkrankungen, virale Infektionen und degenerative Erkrankungen, wird mit unphysiologischer Apoptose in Verbindung gebracht.

Obwohl die proapoptotischen Signale sehr unterschiedlich sein können, verläuft die Apoptose in unterschiedlichen Zelltypen nach einem überraschend ähnlichen Muster. Diese Beobachtung läßt den Schluß zu, daß die letzte Phase der Apoptose hochkonserviert ist. Das apoptotische Programm wird von einer neuen Klasse von Cysteinproteasen, den Caspasen, koordiniert.

Die Erkenntnis, daß Caspasen an der Regulation des konservierten Teils der Apoptose beteiligt sind, hat die Suche nach Caspaseinhibitoren beflügelt. Diese könnten eine Therapie verschiedener Krankheiten durch Hemmung der Apoptose ermöglichen. So wurden synthetische Peptidinhibitoren entwickelt, die relativ spezifisch die verschiedenen Caspasen hemmen. In den Letzten Jahren wurden mehrere natürliche Caspaseinhititoren entdeckt, die entweder die Aktivierung oder die Aktivität der Caspasen blockieren. Diese Übersichtsarbeit zeigt die neuesten Fortschritte auf und diskutiert das Potential der Caspaseinhibitoren als zukünftige Therapeutika.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM. Death receptors: signalling and modulation. Science 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  2. Behrens L, Bender A, Johnson MA, et al. Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain 1997;120: 929–38.

    Article  PubMed  Google Scholar 

  3. Beidler DR, Tewari M, Friesen PD, et al. The Baculovirus p35 protein inhibits Fas- and Tumor necrosis factor-induced apoptosis. J Biol Chem 1995;270:16526–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bialik S, Geenen DL, Sasson IE, et al. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100:1363–72.

    Article  PubMed  CAS  Google Scholar 

  5. Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH. a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996;85: 803–15.

    Article  PubMed  CAS  Google Scholar 

  6. Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995;269:1885–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chinnaiyan AM, O’Rourke K, Tewari M, et al. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–12.

    Article  PubMed  CAS  Google Scholar 

  8. Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991;254:1388–90.

    Article  PubMed  CAS  Google Scholar 

  9. Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994;14:5212–22.

    PubMed  CAS  Google Scholar 

  10. Davidson FF, Steller H. Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature 1998;391: 587–91.

    Article  PubMed  CAS  Google Scholar 

  11. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17:2215–23.

    Article  PubMed  CAS  Google Scholar 

  12. Deveraux QL, Takahashi R, Salvesen GS, et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300–4.

    Article  PubMed  CAS  Google Scholar 

  13. Endres M, Namura S, Shimizu-Sasamata M, et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cerebr Blood Flow Metab 1998; 18:238–47.

    CAS  Google Scholar 

  14. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  15. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–5.

    Article  PubMed  CAS  Google Scholar 

  16. Kataoka T, Schroter M, Hahne M, et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma-irradiation. J Immunol 1998: 161:3936–42.

    PubMed  CAS  Google Scholar 

  17. Koseki T, Inohara N, Chen S, et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 1998;95:5156–60.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda R, Nishikawa A, Tanaka H. Visualization of dystrophic muscle fibres in MDX mouse by staining with Evans blue — evidence of apoptosis in dystrophin-deficient muscle. J Biochem 1995;118:959–64.

    PubMed  CAS  Google Scholar 

  19. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996;85:817–27.

    Article  PubMed  CAS  Google Scholar 

  20. Muzio M, Stockwell BR, Stennicke HR, et al. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273: 2926–30.

    Article  PubMed  CAS  Google Scholar 

  21. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.

    Article  PubMed  CAS  Google Scholar 

  22. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–41.

    Article  PubMed  CAS  Google Scholar 

  23. Rasper DM, Vaillancourt JP, Hadano S, et al. Cell death attenuation by USURPIN, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD95 (Fas, Apo-1) receptor complex. Cell Death Diff 1998;5:271–88.

    Article  CAS  Google Scholar 

  24. Ray CA, Black RA, Kronheim SR, et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 1992;69:597–604.

    Article  PubMed  CAS  Google Scholar 

  25. Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct Biol 1996;3:619–25.

    Article  PubMed  CAS  Google Scholar 

  26. Roy N, Deveraux QL, Takahashi R, et al. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16:6914–25.

    Article  PubMed  CAS  Google Scholar 

  27. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995;80:167–78.

    Article  PubMed  CAS  Google Scholar 

  28. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–6.

    Article  PubMed  CAS  Google Scholar 

  29. Teiger E, Than VD, Richard L, et al. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996;97: 2891–7.

    Article  PubMed  CAS  Google Scholar 

  30. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386:517–21.

    Article  PubMed  CAS  Google Scholar 

  31. Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol 1998;5:R97–103.

    Article  PubMed  CAS  Google Scholar 

  32. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for Interleukin-1-beta processing in monocytes. Nature 1992;356:768–76.

    Article  PubMed  CAS  Google Scholar 

  33. Thornberry NA, Peterson EP, Zhao JJ, et al. Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy) methyl ketones. Biochemistry 1994;33:3934–40.

    Article  PubMed  CAS  Google Scholar 

  34. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 1997;272:17907–11.

    Article  PubMed  CAS  Google Scholar 

  35. Uren AG, Coulson EJ, Vaux DL. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. [Review] [22 refs]. Trends Biochem Sci 1998;23:159–62.

    Article  PubMed  CAS  Google Scholar 

  36. Walker NP, Talanian RV, Brady KD, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10) 2 homodimer. Cell 1994;78:343–52.

    Article  PubMed  CAS  Google Scholar 

  37. Wilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 1994;370: 270–5.

    Article  PubMed  CAS  Google Scholar 

  38. Xue D, Horvitz HR. Inhibition of the Caenohabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995;377:248–51.

    Article  PubMed  CAS  Google Scholar 

  39. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1:319–25.

    Article  PubMed  CAS  Google Scholar 

  40. Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97:276–81.

    PubMed  CAS  Google Scholar 

  41. Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641–52.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou Q, Krebs JF, Snipas SJ, et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 1998; 37:10757–65.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou Q, Snipas S, Orth K, et al. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem 1997; 272:7797–800.

    Article  PubMed  CAS  Google Scholar 

  44. Zou H, Henzel WJ, Liu X, et al. Apaf-1. a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of easpase-3. Cell 1997;90:405–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rudel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudel, T. Caspase inhibitors in prevention of apoptosis. Herz 24, 236–241 (1999). https://doi.org/10.1007/BF03044967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044967

Key Words

Schlüsselwörter

Navigation