Skip to main content

Advertisement

Log in

Successful All-trans Retinoic Acid Treatment of Acute Promyelocytic Leukemia in a Patient with NPM/RAR Fusion

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Acute promyelocytic leukemia (APL) is characterized by a reciprocal chromosomal translocation involving the gene for retinoic acid receptor α (RAR). Most APL patients have a t(15;17) translocation that generates the PML-RAR fusion gene, and such patients respond well to treatment with all-trans retinoic acid (ATRA). Some APL cases also involve rearrangements that fuse RAR to partner genes other than PML, including nucleophosmin (NPM), promyelocytic leukemia zinc finger (PLZF), nuclear mitotic apparatus (NUMA), and Stat5b, but the clinical characteristics of APL without PML-RAR have not been fully clarified. We describe a 64-year-old man with NPM-RAR—positive APL who was receiving hemodialysis therapy for chronic uremia. Complete remission was achieved with ATRA monotherapy and was maintained for 18 months with consolidation chemotherapy. These findings suggest that ATRA can be used to treat APL patients with NPM/RAR as well as APL with PML/RAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosn-retinoic acid receptor fusion. Blood. 1996;87:882–886.

    PubMed  CAS  Google Scholar 

  2. Chen Z, Brand NJ, Chen A, et al. Fusion between a novel Krüppellike zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukemia. EMBO J. 1993;12:1161–1167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor α to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet. 1997;17:109–113.

    Article  PubMed  CAS  Google Scholar 

  4. Arnould C, Philippe C, Bourdon V, Gregoire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor α in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999;8:1741–1749.

    Article  PubMed  CAS  Google Scholar 

  5. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARα gene in acute promyelocytic leukemia. Oncogene. 2001;20:7186–7203.

    Article  CAS  PubMed  Google Scholar 

  6. Grimwade D, Lo Coco FL. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–1973.

    Article  PubMed  CAS  Google Scholar 

  7. Grimwade D, Biondi A, Mozziconacci MJ, et al, on behalf of the Groupe Français de Cytogénétique Hématologique, Groupe de Français d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies.” Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood. 2000;96:1297–1308.

    PubMed  CAS  Google Scholar 

  8. Licht JD, Chomienne LC, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood. 1995;85:1083–1094.

    PubMed  CAS  Google Scholar 

  9. Redner RL, Corey SJ, Rush EA, et al. Differentiation of t(5;17) variant acute promyelocytic leukemia blasts by all-trans retinoic acid. Leukemia. 1997;11:1014–1016.

    Article  PubMed  CAS  Google Scholar 

  10. Takitani K, Nagai K, Tamai H, et al. Pharmacokinetics of all-trans retinoic acid in acute promyelocytic leukemia patients on dialysis. Am J Hematol. 2003;74:147–148.

    Article  PubMed  Google Scholar 

  11. Hummel JL, Wells RA, Dubé ID, Licht JD, Kamel-Reid S. Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia. Oncogene. 1999;18:633–641.

    Article  PubMed  CAS  Google Scholar 

  12. Xu L, Zhao WL, Xiong SM. Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 2001;15:1359–1368.

    Article  PubMed  CAS  Google Scholar 

  13. Betz JL, Behairy AS, Rabionet P, et al. Acquired inv(9): what is its significance? Cancer Genet Cytogenet. 2005;160:76–78.

    Article  PubMed  CAS  Google Scholar 

  14. Yamada K. Population studies of INV(9) chromosomes in 4, 300 Japanese: incidence, sex difference and clinical significance. Jpn J Hum Genet. 1992;37:293–301.

    Article  PubMed  CAS  Google Scholar 

  15. Redner RL, Chen JD, Rush EA, Li H, Pollock SL. The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood. 2000;95:2683–2690.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Okazuka.

About this article

Cite this article

Okazuka, K., Masuko, M., Seki, Y. et al. Successful All-trans Retinoic Acid Treatment of Acute Promyelocytic Leukemia in a Patient with NPM/RAR Fusion. Int J Hematol 86, 246–249 (2007). https://doi.org/10.1532/IJH97.07036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.07036

Key words

Navigation