Skip to main content
Log in

Characterization of a newin vitro model for studies of reepithelialization in human partial thickness wounds

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Reepithelialization of artificial partial thickness wounds made in biopsies of human skin was determined after 3, 5, or 7 d of incubation, submerged or elevated to the air-liquid interface. The biopsies were reepithelialized within 5–7 d, with a more complete epidermal healing in wounds exposed to air. Both types of wounds showed similar time-course in deposition of basement membrane components, as detected by immunofluorescence labeling. Laminin and collagen type VII were deposited underneath the migrating tips, whereas collagen type IV was detected after reepithelialization. Markers of terminal differentiation showed a pattern close to normal in the air-liquid incubated wounds after reepithelialization. Involucrin was detected in the suprabasal regions of the migrating epidermis and thereafter in the upper half of neo-epidermis in the air-liquid incubated wound. Filaggrin could not be detected in the submerged wounds at any time during healing, whereas wounds exposed to air showed a well-differentiated epidermis by Day 7. Tritiated thymidine-incorporation indicated proliferation of epidermal and dermal cells during reepithelialization and a maintained viability, as shown by cultivation of endothelial- and fibroblast-like cells obtained from the dermis 7 d after wounding.

Reepithelialization in this humanin vitro model is supported by a matrix close to normal with the possibility of extracellular influences and cell-cell interactions and, in addition, the technique is simple and reproducible. Therefore, we suggest this model for studies of regeneration in culture and as a complement toin vivo studies on epidermal healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alitalo, K.; Kuismanen, E.; Myllylä, R., et al. Extracellular matrix proteins of human epidermal keratinocytes and feeder 3T3 cells. J. Cell Biol. 94:497–505; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Asselineau, D.; Bernard, B. A.; Bailly, C., et al. Human epidermis reconstructed by culture: is it “normal”? J. Invest. Dermatol. 86:181–186; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Banks-Schlegel, S.; Green, H. Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplantation. 29:308–313; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Banks-Schlegel, S.; Green, H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J. Cell Biol. 90:732–737; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Basset-Séguin, N.; Culard, J. F.; Kerai, C., et al. Reconstituted skin in culture: a simple method with optimal differentiation. Differentiation 44:232–238; 1990.

    Article  PubMed  Google Scholar 

  • Bell, E.; Sher, S.; Hull, B., et al. The reconstitution of living skin. J. Invest. Dermatol. 81:436–438; 1983.

    Article  PubMed  Google Scholar 

  • Bernard, B. A.; Robinson, S. M.; Vandaele, S., et al. Abnormal maturation pathway of keratinocytes in psoriatic skin. Br. J. Dermatol. 112:647–653; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Bosca, A. R.; Tinois, E.; Faure, M., et al. Epithelial differentiation of human skin equivalents after grafting onto nude mice. J. Invest. Dermatol. 91:136–141; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Briggaman, R. A.; Dalldorf, F. G.; Wheeler, C. E. J. Formation and origin of basal lamina and anchoring fibrils in adult human skin. J. Cell Biol. 51:384–395; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F.; Lanigan, J. M.; DellaPelle, P., et al. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J. Invest. Dermatol. 79:264–269; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Compton, C. C.; Gill, J. G.; Bradford, D. A., et al. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab. Invest. 60:600–612; 1989.

    PubMed  CAS  Google Scholar 

  • Coulomb, B.; Saiag, P.; Bell, E., et al. A new method for studying epidermalization in vitro. Br. J. Dermatol. 114:91–101; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dale, B. A.; Ling, S. Y. Immunologic cross-reaction of stratum corneum basic protein and a keratohyalin granule protein. J. Invest. Dermatol. 72:257–261; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Demarchez, M.; Hartmann, D. J.; Herbage, D., et al. Wound healing of human skin transplanted onto the nude mouse. II. An immunohistological and ultrastructural study of the epidermal basement membrane zone reconstruction and connective tissue reorganization. Dev. Biol. 121:119–129; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Demarchez, M.; Sengel, P.; Prunieras, M. Wound healing of human skin transplanted onto the nude mouse. I. An immunohistological study of the reepithelialization process. Dev. Biol. 113:90–96; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Flaxman, B. A.; Harper, R. A. Organ culture of human skin in chemically defined medium. J. Invest. Dermatol. 64:96–99; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Foidart, J. M.; Bere, E. W.; Yaar, M., et al. Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab. Invest. 42:336–342; 1980.

    PubMed  CAS  Google Scholar 

  • Freeman, A. E.; Igel, H. J.; Herrman, B. J., et al. Growth and characterization of human skin epithelial cell cultures. In Vitro 12:352–362; 1976.

    PubMed  CAS  Google Scholar 

  • Fuchs, E.; Green, H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Garlick, J. A.; Taichmann, L. B. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab. Invest. 70:916–924; 1994.

    PubMed  CAS  Google Scholar 

  • Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Haegerstrand, A.; Gillis, C.; Bengtsson, L. Serial cultivation of adult human endothelium from the great saphenous vein. J. Vasc. Surg. 16:280–285; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 22:629–632; 1980.

    Article  Google Scholar 

  • Inoue, M.; Kratz, G.; Haegerstrand, A., et al. Collagenase expression is rapidly induced in wound edge keratinocytes after acute injury in human skin; persists during healing and stops at re-epithelialisation. J. Invest. Dermatol. 104:479–483; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kratz, G.; Lake, M.; Gidlund, M. Insulin growth factor-1 and-2 and their role in the re-epithelialization of wounds; interactions with insulin like growth factor binding protein type 1. Scand. J. Plast. Reconstr. Surg. Hand Surg. 28:107–112; 1994.

    PubMed  CAS  Google Scholar 

  • Kratz, G.; Palmer, G.; Haegerstrand, A. Effects of keratinocyte conditioned medium, amniotic fluid and EGF in reepithelialization of human skin wounds in vitro. Eur. J. Plast. Surg. 18:209–213; 1995.

    Article  Google Scholar 

  • Limat, A.; Hunziker, C.; Boillat, K., et al. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J. Invest. Dermatol. 92:758–762; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mansbridge, J. M.; Knapp, A. M. Changes in keratinocyte maturation during wound healing. J. Invest. Dermatol. 89:253–263; 1987.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J. A.; Leigh, I. M.; Eady, R. A. J. Intracellular expression of type VII collagen during wound healing in severe recessive dystrophic epidermolysis bullosa and normal human skin. Br. J. Dermatol. 127:312–317; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Olerud, J. E.; Gown, A. M.; Bickenbach, J., et al. An assessment of human epidermal repair in elderly normal subjects using immunohistochemical methods. J. Invest. Dermatol. 90:845–850; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ortonne, J.-P.; Löning, T.; Schmitt, D., et al. Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Archiv. A, Pathol. Anat. Histol. 392:217–230; 1981.

    Article  CAS  Google Scholar 

  • Prunieras, M.; Regnier, M.; Woodley, D. Methods for cultivation of keratinocytes with an air-liquid interface. J. Invest. Dermatol. (Supplement) 81:28s-33s; 1983.

    Article  CAS  Google Scholar 

  • Regauer, S.; Compton, C. C. Cultured keratinocyte sheets enhance spontaneous re-epithelialization in a dermal explant model of partial-thickness wound healing. J. Invest. Dermatol. 95:341–346; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Regauer, S.; Seiler, G. R.; Barrandon, Y., et al. Epithelial origin of cutaneous anchoring fibrils. J. Cell Biol. 111:2109–2115; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Regnier, M.; Prunieras, M.; Woodley, D. T. Growth and differentiation of adult human epidermal cells on dermal substrates. Front. Matrix Biol. 9:4–35; 1981.

    Google Scholar 

  • Rheinwald, J. G.; Green, H. Serial cultivation of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Rigal, C.; Pieraggi, M.-T.; Serre, G., et al. Optimization of a model of full-thickness epidermal burns in the pig and immunohistochemical study of epidermodermal junction regeneration during burn healing. Dermatology 184:103–110; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Rigal, C.; Pieraggi, M.-T.; Vincent, C., et al. Healing of full-thickness cutaneous wounds in the pig. I. Immunohistochemical study of epidermodermal junction regeneration. J. Invest. Dermatol. 96:777–785; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, L. Y.; Keene, D. R.; Morris, N. P., et al. Type VII collagen is a major component of anchoring fibrils. J. Cell Biol. 106:1577–1586; 1986.

    Article  Google Scholar 

  • Shipley, G. D.; Pittelkow, M. R. Control of growth and differentiation in vitro of human keratinocytes cultured in serum-free medium (abstr). Arch. Dermatol. 123:1541a-1544a; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Smola, H.; Thiekötter, G.; Fusenig, N. E. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J. Cell Biol. 122:417–429; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J. R.; Alvarez, O. M.; Bere, W., et al. Detection of basement membrane zone antigens during epidermal wound healing in pigs. J. Invest. Dermatol. 77:240–243; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T.; Peterson, H. D.; Herzog, S. R., et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 259:2566–2571; 1988a.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T.; Stanley, J. R.; Reese, M. J., et al. Human dermal fibroblasts synthesize laminin. J. Invest. Dermatol. 90:679–683; 1988b.

    Article  PubMed  CAS  Google Scholar 

  • Yaoita, H.; Foidart, J. M.; Katz, S. I. Localization of the collagenous component in skin basement membrane. J. Invest. Dermatol. 70:191–193; 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, K., Kratz, G. & Haegerstrand, A. Characterization of a newin vitro model for studies of reepithelialization in human partial thickness wounds. In Vitro Cell.Dev.Biol.-Animal 32, 534–540 (1996). https://doi.org/10.1007/BF02722980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722980

Key words

Navigation