Skip to main content
Log in

Selection of a chemically defined medium for culturing fetal mouse small intestine

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

We evaluated six commercially available tissue culture media in their capacity to support villi morphogenesis and enterocyte differentiation during duodenal development of the fetal mouse in vitro: McCoy's 5A, Medium 199, Swim's S77, Trowell T8, Leibovitz L-15, and RPMI-1640. The duodenal segments were resected at 15 d gestation, before the formation of intestinal villi. In the segments cultured with the first four media, no villi differentiated even at 72 h culture. The number of epithelial cells per transverse section of the explants did not increase at 24 h and thereafter the number of epithelial cells decreased, except with McCoy's 5A. With the Leibovitz and RPMI media, rudimentary villi differentiated at 24 h of culture and they attained their longest length at 48 h. With the RPMI medium, the number of epithelial cells doubled at 24 h of culture and with Leibovitz medium it doubled at 48 h. At the fine structural level absorptive cells remained poorly differentiated with all the media studied. Goblet cells were easily identified after 24 h culture; they had a well developed rough endoplasmic reticulum and numerous mucous granules. Endocrine cells differentiated in culture and they were loaded with secretion granules. It was concluded that the small intestine of the fetal mouse can be kept in organ culture for at least 72 h. Full maturation of absorptive cells seemed to require some additional factor(s) as they remained poorly differentiated with all the media studied. Because well differentiated endocrine cells were present in all the explants, it appeared that gastrointestinal hormones do not affect villi morphogenesis and absorptive cells differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hugon, J. S.; Borgers, M. Ultrastructural diffentiation and enzymatic localization of phosphatase in the developing duodenal epithelium of the mouse. Histochemie 19: 13–30; 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Calvert, R. Sequential differentiation of intestinal endocrine cells in the fetal mouse. Cell Tissue Res. 192: 267–276; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Nordström, C.; Dahlqvist, A.; Josefsson, L. Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine: comparison of alkaline phosphatase, disaccharidases and dipeptidases. J. Histochem. Cytochem. 15: 713–721; 1968.

    Google Scholar 

  4. Nordström, C.; Koldovsky, O.; Dahlqvist, A. Localization of β-galactosidases and acid phosphatase in the small intestinal wall: comparison of adult and suckling rat. J. Histochem. Cytochem. 17: 341–347; 1969.

    PubMed  Google Scholar 

  5. Imondi, A. R.; Balis, M. E.; Lipkin, M. Changes in enzyme levels accompanying differentiation of intestinal epithelial cells. Exp. Cell Res. 58: 323–330; 1969.

    Article  PubMed  CAS  Google Scholar 

  6. Fortin-Magana, R.; Hurwitz, R. Herbst, J. J.; Kretchmer, N. Intestinal enzymes: indicators of proliferation and differentiation in the jejunum. Science 167: 1627–1628; 1970.

    Article  PubMed  CAS  Google Scholar 

  7. Spooner, B. S.; Cohen, H. I.; Faubion, J. Development of the embryonic mammalian pancreas: the relationship between morphogenesis and cytodifferentiation. Dev. Biol. 61: 119–130; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Mathan, M.; Moxey, P. C.; Trier, J. S. Morphogenesis of fetal rat duodenal villi. Am. J. Anat. 146: 73–92; 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Mathan, M.; Hermos, J. A.; Trier, J. S. Structural features of the epithelio-mesenchymal interface of rat duodenal mucosa during development J. Cell Biol. 52: 577–588; 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai, L. J.; Overton J. The relation between villus formation and the pattern of extracellular fibers as seen by scanning microscopy. Dev. Biol. 52: 61–73; 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Lebenthal, F. Induction of fetal rat interokinase (entero-peptidase EC 3.4.21.9) in utero by hydrocortisone and actinomycin D. Pediatr. Res. 11: 282–285; 1977.

    PubMed  CAS  Google Scholar 

  12. Celano, P.; Jumawan, J.; Horowitz, C.; Lau, H.; Koldovsky, O. Prenatal induction of sucrase activity in rat jejunum. Biochem. J. 162: 469–472; 1977.

    PubMed  CAS  Google Scholar 

  13. Jumawan, J.; Celano, P.; Horowitz, C.; Lau, H.; Koldovsky, O. Effect of cortisone andl-triiodothyronine administration to pregnant rats on the activity of fetal intestinal disaccharidases and lysosomal acid β-galactosidase. Biol. Neonate 32: 211–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Black, B. L. Moog, F. Goblet cells in embryonic intestine: accelerated differentiation in culture. Science 197: 368–370; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Black, B. L.; Moog, F. Alkaline phosphatase and maltase activity in the embryonic chick intestine in culture. Dev. Biol. 66: 232–249; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Black, B. L. Morphological development of the epithelium of the embryonic chick intestine in culture: influence of thyroxine and hydrocortisone. Am. J. Anat. 153: 573–600; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Trowell, O. A. The culture of mature organs in a synthetic medium. Exp. Cell Res. 16: 118–147; 1959.

    Article  PubMed  CAS  Google Scholar 

  18. Corradino, R. A. Embryonic chick intestine in organ culture: interaction of adenylate cyclase system and vitamin D3-mediated calcium absorptive mechanism. Endocrinology 94: 1607–1614; 1974.

    Article  PubMed  CAS  Google Scholar 

  19. DeRitis, G.; Falchuck, Z. M.; Trier, J. S. Differentiation and maturation of cultured fetal rat jejunum. Dev. Biol. 45: 304–317; 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Luft, J. H. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9: 409–415; 1961.

    PubMed  CAS  Google Scholar 

  21. Calvert, R.; Pusterla, A. Epon-embedded tissue stained with aldehyde-fuchsin for radioautography. Stain Technol. 49: 323–327; 1974.

    PubMed  CAS  Google Scholar 

  22. Karnovsky, M. J. Simple method for “staining with lead” at high pH in electron microscopy. J. Biophys. Biochem. Cytol. 11: 729–732; 1961.

    Article  PubMed  CAS  Google Scholar 

  23. Novikoff, A. B.; Novikoff, P. M.; Davis, C.; Quantana, R. Studies on microperoxisomes. II. A cytochemical method for light and electron microscopy. J. Histochem. Cytochem. 20: 1006–1023; 1972.

    PubMed  CAS  Google Scholar 

  24. Solcia, E.; Capella, C.; Vassalo, G.; Buffa, R. Endocrine cells of the gastric mucosa. Bourne, G. H.; Danielli, J. F., eds. International review of cytology. vol. 42. New York: Academic Press; 1975: 223.

    Google Scholar 

  25. Sumiya, M. Differentiation of the digestive tract epithelium of the chick embryo cultured in vitro enveloped in a fragment of the vitelline membrane, in the absence of mesenchyme. Wilhelm Roux's Arch. Dev. Biol. 179: 1–17; 1976.

    Article  Google Scholar 

  26. Mizuno, T. Une hypothèse sur l'organogénèse du tractus digestif. C. R. Séances Soc. Biol. 169: 1096–1098; 1975.

    CAS  Google Scholar 

  27. Coulombre, A. J.; Coulombre J. L. Intestinal development. I. Morphogenesis of the villi and musculature. J. Embryol. Exp. Morphol. 6: 403–411; 1958.

    PubMed  CAS  Google Scholar 

  28. Burgess, D. R. Morphogenesis of intestinal villi. II. Mechanism of formation of previllous ridges. J. Embryol. Exp. Morphol. 34: 723–740; 1975.

    PubMed  CAS  Google Scholar 

  29. Grey, R. D. Morphogenesis of intestinal villi. I. Scanning electron microscopy of the duodenal epithelium of the developing chick embryo. J. Morphol. 137: 193–214; 1972.

    Article  PubMed  CAS  Google Scholar 

  30. Moog, F. The functional differentiation of the small intestine. IX. The influence of thyroid function on cellular differentiation and accumulation of alkaline phosphatase in the duodenum of the chick embryo. Gen. Comp. Endocrinol. 1: 416–432; 1961.

    Article  PubMed  CAS  Google Scholar 

  31. Overton, J.; Shoup, J. Fine structure of cell surface specialization in the developing duodenal mucosa of the chick. j. Cell Biol. 21: 75–85; 1964.

    Article  PubMed  CAS  Google Scholar 

  32. Philpott, G. W. Tissue-specific inhibition of cell proliferation in embryonic stomach epithelium in vitro. Gastroenterology 61: 25–34; 1971.

    PubMed  CAS  Google Scholar 

  33. Soriano, L. Différenciation des épithéliums du tube digestif in vitro. J. Embryol. Exp. Morphol. 14: 119–128; 1965.

    PubMed  CAS  Google Scholar 

  34. Marsh, M. N.; Trier, J. S. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. II. Radioautographic studies. Gastroenterology 67: 636–645; 1974.

    PubMed  CAS  Google Scholar 

  35. Parker, F. G.; Barnes, E. N.; Kaye, G. I. The pericryptal fibroblast sheath: IV. Replication, migration, and differentiation of the subepithelial fibroblast of the crypt and villus of the rabbit jejunum. Gastroenterology 67: 607–621; 1974.

    PubMed  CAS  Google Scholar 

  36. Borghese, E. Explantation experiments on the influence of the connective tissue capsule on the development of the epithelial part of the submandibular gland ofMus musculus. J. Anat. 84: 303–318; 1950.

    PubMed  CAS  Google Scholar 

  37. Grobstein, C. Analysis in vitro of the early organization of the rudiment of the mouse submandibular gland. J. Morphol. 93: 19–44; 1953.

    Article  Google Scholar 

  38. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130: 319–340; 1955.

    Article  Google Scholar 

  39. Golosow, N.; Grobstei, C. Epithelio-mesenchymal interaction in pancreatic morphogenesis. Dev. Biol. 4: 242–255; 1962.

    Article  PubMed  CAS  Google Scholar 

  40. Fukamachi, H.; Mizuno, T.; Takayama, S. Epithelial-mesenchymal interactions in differentiation of stomach epithelium in fetal mice. Anat. Embryol. 157: 151–160; 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Dobbins W. O.; Hijmans, C. J.; McCarty, K. S. A light and electron microscopic study of duodenal epithelium of chick embryos cultured in the presence and absence of hydrocortisone. Gastroenterology 53: 557–574; 1967.

    PubMed  Google Scholar 

  42. Hijmans, J. C.; McCarty, K. S. Effect of hydrocortisone on chick duodenum cultured in chemically defined medium. Proc. Soc. Exp. Biol. Med. 131: 1407–1412; 1969.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by Grant MA-6069 from the Medical Research Council of Canada. Mr. P. A. Micheletti was supported by a studentship from the FCAC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, R., Micheletti, P.A. Selection of a chemically defined medium for culturing fetal mouse small intestine. In Vitro 17, 331–344 (1981). https://doi.org/10.1007/BF02618145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618145

Key words

Navigation