Skip to main content
Log in

Stroke volume equation for impedance cardiography

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The study's goal was to determine if cardiac output (CO), obtained by impedance cardiography (ICG), would be improved by a new equation N, implementing a square root transformation for dZ/dtmax/Z0, and a variable magnitude, mass-based volume conductor Vc. Pulmonary artery catheterisation was performed on 106 cardiac surgery patients pre-operatively. Post-operatively, thermodilution cardiac output (TDCO) was simultaneously compared with ICG CO. dZ/dtmax/Z0 and Z0 were obtained from a proprietary bioimpedance device. The impedance variables, in addition to left ventricular ejection time TLVE and patient height and weight, were input using four stroke volume (SV) equations: Kubicek (K), Sramek (S), Sramek-Bernstein (SB), and a new equation N. CO was calculated as SV × heart rate. Data are presented as mean ± SD. One way repeated measures of ANOVA followed by the Tukey test were used for inter-group comparisons. Bland-Altman methods were used to assess bias, precision and limits of agreement. P<0.05 was considered statistically significant. CO implementing N (6.06±1.48 l min−1) was not different from TDCO (5.97±1.41 l min−1). By contrast, CO calculated using K (3.70±1.53 l min−1), S (4.16±1.83 l min−1) and SB (4.37±1.82 l min−1) was significantly less than TDCO. Bland-Altman analysis showed poor agreement between TDCO and K, S and SB, but not between TDCO and N. Compared with TDCO, equation N, using a square-root transformation for dZ/dtmax/Z0, and a mass-based VC was superior to existing transthoracic impedance techniques for SV and CO determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axler, O., Tousignant, C., Thompson, C. R., Dall'avaSantucci, J., Phang, P. T., Russell, J. A., andWalley, K. R. (1996): ‘Comparison of transesophageal echocardiographic, fick, and thermodilution cardiac output in critically ill patients’.J. Crit. Care,11, pp. 109–116

    Article  Google Scholar 

  • Bausel, R. B., andLi, F. (2002): ‘Power analysis for experimental research: A practical guide for the biological, medical and social sciences’ (Cambridge University Press, Cambridge, UK, 2002), pp. 179–238.

    Google Scholar 

  • Bernstein, D. P. (1986): ‘A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale’,Crit. Care Med.,14, pp. 904–909.

    Google Scholar 

  • Bland, J. M., andAltman, D. G. (1986): ‘Statistical methods for assessing agreement between two methods of clinical measurement’,Lancet,1, pp. 307–310.

    Google Scholar 

  • Brock, H., Gabriel, C., Bibl, D., andNecek, S. (2002): ‘Monitoring intravascular volumes for postoperative volume therapy’,Eur. J. Anaesthesiol.,19, pp. 288–294.

    Google Scholar 

  • Cleveland, W. S. (1979): ‘Robust locally weighted regression and smoothing scatterplots’,J. Am. Stat. Assoc.,74, pp. 829–836.

    MATH  MathSciNet  Google Scholar 

  • Collis, T., Devereux, R. B., Roman, M. J., De Simone, G., Yeh, J., Howard, B. V., Fabsitz, R. R., andWelty, T. K. (2001): ‘Relations of stroke volume and cardiac output to body composition: the strong heart study’,Circulation,103, pp. 820–825.

    Google Scholar 

  • Critchley, L. A., andCritchley, J. A. (1999): ‘A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques’,J. Clin. Monit. Comput.,15, pp. 85–91.

    Article  Google Scholar 

  • Critchley, L. A., Calcroft, R. M., Tan, P. Y., Kew, J., andCritchley, J. A. (2000): ‘The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill’,Intensive Care Med.,26, pp. 679–685.

    Article  Google Scholar 

  • Debski, T. T., Zhang, Y., Jennings, J. R., andKamarck, T. W. (1993): ‘Stability of cardiac impedance measures: aortic opening (B-point) detection and scoring’,Biol. Psychol.,36, pp. 63–74.

    Article  Google Scholar 

  • Dhingra, V. K., Fenwick, J. C., Walley, K. R., Chittock, D. R. andRonco, J. J. (2002): ‘Lack of agreement between thermodilution and fick cardiac output in critically ill patients’,Chest,122, pp. 990–997.

    Article  Google Scholar 

  • Feldschuh, J., andEnson, Y. (1977): ‘Prediction of the normal blood volume. Relation of blood volume to body habitus’,Circulation,56, pp. 605–612.

    Google Scholar 

  • Gardin, J. M., Burn, C. S., Childs, W. J., andHenry, W. L. (1984): ‘Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography’,Am. Heart J.,107, pp. 310–319.

    Google Scholar 

  • Genoni, M., Pelosi, P., Romand, J. A., Pedoto, A., Moccetti, T., andMalacrida, R. (1998): ‘Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure’,Crit. Care Med.,26, pp. 1441–1445.

    Google Scholar 

  • Goedje, O., Peyerl, M., Seebauer, P., Lamm, P., Mair, H., andReichart, B. (1998): ‘Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volume as preload indicators’,Eur. J. Cardiothorac. Surg.,13, pp. 533–559.

    Google Scholar 

  • Hofer, C. K., Zalunardo, M. P., Klaghofer, R., Spahr, T., Pasch, T., andZollinger, A. (2002): ‘Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning’,Acta Anaesthesiol. Scand.,46, pp. 303–308.

    Article  Google Scholar 

  • Holt, J. P., Rhode, E. A., andKines, H. (1968): ‘Ventricular volumes and body weight in mammals’,Am. J. Physiol.,215, pp. 704–715.

    Google Scholar 

  • Jansen, J. R. (1995): ‘The thermodilution method for the clinical assessment of cardiac output’,Intens. Care Med.,21, pp. 691–697.

    Google Scholar 

  • Khan, M. R., Guha, S. K., Tandon, S., andRoy, S. B. (1977): ‘Quantitative electrical-impedance plethysmography for pulmonary oedema’,Med. Biol. Eng. Comput.,15, pp. 627–633.

    Google Scholar 

  • Kosicki, J., Chen, L. H., Hobbie, R., Patterson, R., andAckerman, E. (1986): ‘Contributions to the impedance cardiogram waveform’,Ann. Biomed. Eng.,14, pp. 67–80.

    Google Scholar 

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., andMattson, R. H. (1966): ‘Development and evaluation of an impedance cardiac output system’,Aerosp. Med.,37, pp. 1208–1212.

    Google Scholar 

  • Kubicek, W. G., Kottke, J., Ramos, M. U., Patterson, R. P., Witsoe, D. A., Labree, J. W., Remole, W., Layman, T. E., Schoening, H., andGaramela, J. T. (1974): ‘The Minnesota impedance cardiograph-theory and applications’,Biomed. Eng.,9, pp. 410–416.

    Google Scholar 

  • Kubicek, W. G. (1989): ‘On the source of peak first time derivative (dZ/dt) during impedance cardiography’,Ann. Biomed. Eng.,17, pp. 459–462.

    Google Scholar 

  • Kussmaul, W. G., Kleaveland, J. P., Martin, J. L., Hirshfeld, J. W. Jr., andLaskey, W. K. (1987): ‘Effects of exercise and nitroprusside on left ventricular ejection dynamics in idiopathic dilated cardiomyopathy’,Am. J. Cardiol.,59, pp. 647–655.

    Article  Google Scholar 

  • Levett, J. M., andReplogle, R. L. (1979): ‘Thermodilution cardiac output: a critical analysis and review of the literature’,J. Surg. Res.,27, pp. 392–404.

    Article  Google Scholar 

  • Lindstedt, L., andSchaeffer, P. J. (2002): ‘Use of allometry in predicting anatomical and physiological parameters of mammals’,Lab. Anim.,36, pp. 1–19.

    Article  Google Scholar 

  • Matsuda, Y., Yamada, S., Kurogane, H., Sato, H., Maeda, K., andFukuzaki, H. (1978): ‘Assessment of left ventricular performance in man with impedance cardiography’,Jpn. Circ. J.,42, pp. 945–954.

    Google Scholar 

  • Metry, G., Wikstrom, B., Linde, T., andDanielson, G. (1997): ‘Gender and age differences in transthoracic bioimpedance’,Acta Physiol. Scand.,161, pp. 171–175.

    Article  Google Scholar 

  • Mohapatra, S. N., andHill, D. W. (1977): ‘Investigation into the origin and application of the electrical impedance technique’, inMohapatra, S. N. (ed.): ‘Non-invasive cardiovascular monitoring by electrical impedance technique’ (Pitman Medical Limited, London, UK, 1981), p. 41.

    Google Scholar 

  • Newman, D. G., andCallister, R. (1999): ‘The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review’,Aviat. Space Environ. Med.,70, pp. 780–789.

    Google Scholar 

  • Nishikawa, T., andDohi, S. (1993): ‘Errors in the measurement of cardiac output by thermodilution’,Can. J. Anaesth.,40, pp. 142–153.

    Google Scholar 

  • Nyboer, J. (1950): ‘Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study’,Circulation,2, pp. 811–821.

    Google Scholar 

  • Ono, T., Miyamura, M., Yasuda, Y., Ito, T., Saito, T., Ishiguro, T., Yoshizawa, M., andYambe, T. (2004): ‘Beat-to-beat evaluation of systolic time intervals during bicycle exercise using impedance cardiography’,Tohoku J. Exp. Med.,203, pp. 17–29.

    Article  Google Scholar 

  • Ovsyshcher, I., andFurman, S. (1993): ‘Impedance cardiography for cardiac output estimation in pacemaker patients: review of the literature’,Pacing Clin. Electrophysiol.,16, pp. 1412–1422.

    Google Scholar 

  • Penney, B. C. (1986): ‘Theory and cardiac applications of electrical impedance measurements’,Crit. Rev. Biomed. Eng.,13, pp. 227–281.

    Google Scholar 

  • Quail, A. W., Traugott, F. M., Porges, W. L., andWhite, S. W. (1981): ‘Thoracic resistivity for stroke volume determination in impedance cardiography’,J. Appl. Physiol.,50, pp. 191–195.

    Google Scholar 

  • Raaijmakers, E., Faes, T. J., Kunst, P. W., Bakker, J., Rommes, J. H., Goovaerts, H. G., andHeethaar, R. M. (1998): ‘The influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiography’,Physiol. Meas.,19, pp. 491–499.

    Article  Google Scholar 

  • Raaijmakers, E., Faes, T. J., Scholten, R. J., Goovaerts, H. G., andHeethaar, R. M. (1999): ‘A meta-analysis of three decades of validating thoracic impedance cardiography’,Crit. Care Med.,27, pp. 1203–1213.

    Google Scholar 

  • Reitan, J. A., Warpinski, M. A., andMartucci, R. W. (1978): ‘Determinants and genesis of canine pneumocardiogram’,Anesth. Analg.,57, pp. 653–662.

    Google Scholar 

  • Rubal, B. J., Baker, L. E., andPoder, T. C. (1980): ‘Correlation between maximumdZ/dt and parameters of left ventricular performance’,Med. Biol. Eng. Comput.,18, pp. 541–548.

    Google Scholar 

  • Sakamoto, K., andKanai, H. (1979): ‘Electrical characteristics of flowing blood’,IEEE Trans. Biomed. Eng.,26, pp. 686–695.

    Google Scholar 

  • Seitz, W. S., andMcIlroy, M. B. (1988): ‘Interpretation of the HJ interval of the normal ballistocardiogram based on the principle of conservation of momentum and aortic ultrasonic Doppler velocity measurements during left ventricular ejection’,Cardiovasc. Res.,22, pp. 571–574.

    Google Scholar 

  • Sherman, M. S., Kosinski, R., Paz, H. L., andCampbell, D. (1997): ‘Measuring cardiac output in critically Ill patients: disagreement between thermodilution-, calculated-, expired gas-, and oxygen consumption-based methods’,Cardiology,88, pp. 19–25.

    Google Scholar 

  • Shoemaker, W. C., Wo, C. C., Chan, L., Ramicone, E., Kamel, E. S., Velmahos, G. C., andBelzberg, H. (2001): ‘Outcome prediction of emergency patients by noninvasive hemodynamic monitoring’,Chest,120, pp. 528–537.

    Article  Google Scholar 

  • Spencer, K. T., Lang, R. M., Neumann, A., Borow, K. M., andShroff, S. G. (1991): ‘Doppler and electromagnetic comparisons of instantaneous aortic flow characteristics in primates’,Circ. Res.,68, pp. 1369–1377.

    Google Scholar 

  • Van Der Meer, B. J., Woltjer, H. H., Sousman, A. M., Schreuder, W. O., Bulder, E. R., Huybregts, M. A., andDe Vries, P. M. (1996): ‘Impedance cardiography. Importance of the equation and the electrode configuration’,Intensive Care Med.,22, pp. 1120–1124.

    Article  Google Scholar 

  • Van De Water, J. M., Miller, T. W., Vogel, R. L., Mount, B. E., andDalton, M. L. (2003): ‘Impedance cardiography: the next vital sign technology?’,Chest,123, pp. 2028–2033.

    Google Scholar 

  • Visser, K. R., Lamberts, R., andZijlstra, W. G. (1987): ‘Investigation of the parallel conductor model of impedance cardiography by means of exchange transfusion with stroma free haemoglobin solution in the dog’,Cardiovasc. Res.,21, pp. 637–645.

    Google Scholar 

  • Visser, K. R. (1989): ‘Electric properties of flowing blood and impedance cardiography’,Ann. Biomed. Eng.,17, pp. 463–473.

    Google Scholar 

  • Visser, K. R., Lamberts, R., andZijlstra, W. G. (1990): ‘Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog’,Cardiovasc. Res.,24, pp. 24–32.

    Google Scholar 

  • Woltjer, H. H., Bogaard, H. J., andDe Vries, P. M. (1997): ‘The technique of impedance cardiography’,Eur. Heart. J.,18, pp. 1396–1403.

    Google Scholar 

  • Yamakoshi, K., Togawa, T., andIto, H. (1977): ‘Evaluation of the theory of cardiac-output computation from transthoracic impedance plethysmogram’,Med. Biol. Eng. Comput.,15, pp. 479–488.

    Google Scholar 

  • Young, J. D., andMcQuillan, P. (1993): ‘Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis’,Br. J. Anaesth.,70, pp. 58–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Bernstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstein, D.P., Lemmens, H.J.M. Stroke volume equation for impedance cardiography. Med. Biol. Eng. Comput. 43, 443–450 (2005). https://doi.org/10.1007/BF02344724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344724

Keywords

Navigation