Skip to main content
Log in

Plasma bile acids in patients with peroxisomal dysfunction syndromes: analysis by capillary gas chromatography — mass spectrometry

  • Original Investigations
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Six patients with disorders of peroxisomal function have been studied. Two presented in the neonatal period with the classical features of the Zellweger syndrome, two had incomplete Zellweger phenotypes, one infantile Refsum's disease and one rhizomelic chondrodysplasia punctata. Plasma bile acid profiles were determined using capillary gas chromatography-mass spectrometry. In all patients, except the case of chondrodysplasia punctata, 27-carbon and 29-carbon bile acids were present. The compounds identified included trihydroxycoprostanic acid (THCA), dihydroxycoprostanic acid (DHCA), C24-, C25- and C26-hydroxylated derivatives of THCA, a 27-carbon acid with four nuclear hydroxy groups and 3α,7α,12α-trihydroxy-27a,27b-dihomo-5β-cholestan-26, 27b-dioic acid (C29-dicarboxylic acid). THCA was present at a low concentration in the patient with infantile Refsum's disease; the concentration of DHCA and the C29 dicarboxylic acid were considerably higher. The presence of abnormal bile acids in patients with Zellweger syndrome and infantile Refsum's disease could be explained by the absence of peroxisomes from their hepatocytes. In chondrodysplasia punctata the cause of peroxisomal dysfunction must be different, since normal bile acid synthesis is preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelson M, Sjövall J (1974) Separation and computerised gas chromatography-mass spectrometry of unconjugated neutral steroids in plasma. J Steroid Biochem 5:733–738

    Article  CAS  Google Scholar 

  2. Back P (1982) Phenobarbital-induced alterations of bile acid metabolism in cases of intrahepatic cholestasis. Klin Wochenschr 60:541–549

    Article  CAS  PubMed  Google Scholar 

  3. Back P, Gerok W (1978) Zum Effekt des Phenobarbitals bei intrahepatischer Cholestase-Stimulierung der gallensauren 6α-Hydroxylierung. Inn Med 5:329–336

    Google Scholar 

  4. Barth PG, Schutgens RBH, Bakkeren JAJM, Dingemans KP, Heymans HSA, Douwes AC, van der Klei-van Moorsel JM (1985) A milder variant of Zellweger syndrome. Eur J Pediatr 144:338–342

    Article  CAS  PubMed  Google Scholar 

  5. Bleeker-Wagemakers EM, Oorthuys JWE, Wanders RJA, Schutgens RBH (1986) Long-term survival of a patient with the cerebrohepato-renal (Zellweger) syndrome. Clin Genet 29:160–164

    CAS  PubMed  Google Scholar 

  6. Clayton PT (1984) The validation and application of an assay for the measurement of bile salts in the plasma of infants and children. M.D. Thesis, University of Cambridge

  7. Clayton PT, Muller DPR (1980) A simplified gas liquid chromatographic method for the estimation of non-sulphated plasma bile acids. Clin Chim Acta 105:401–405

    Article  CAS  PubMed  Google Scholar 

  8. Clayton PT, Muller DPR, Lawson AM (1982) The bile acid composition of gastric contents from neonates with high intestinal obstruction. Biochem J 206:489–498

    CAS  PubMed  Google Scholar 

  9. Durst HD, Milanu M, Kikta EJ, Connelly SA, Grushka E (1975) Phenacyl esters of fatty acids via crown ether catalyst for enhanced ultraviolet detection in liquid chromatography. Anal Chem 47:1797–1801

    Article  CAS  PubMed  Google Scholar 

  10. Eyssen H, Eggermont E, Van Eldere J, Jaeken J, Parmentier G, Janssen G (1985) Bile acid abnormalities and the diagnosis of the cerebro-hepato-renal syndrome (Zellweger syndrome). Acta Paediatr Scand 74:539–544

    CAS  PubMed  Google Scholar 

  11. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valasmis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebrohepatorenal syndrome. Science 182:62–64

    CAS  PubMed  Google Scholar 

  12. Hajra AK, Burke CL, Jones CL (1979) Subcellular localisation of acyl coenzyme A: dihydroxyacetone phosphate acyl transferase in rat liver peroxisomes (microbodies). J Biol Chem 254:10896–10900

    CAS  PubMed  Google Scholar 

  13. Hanson RF, Szczepanik-Van Leeuwen P, Williams GC, Grabowski G, Sharp HL (1978) Defects of bile acid synthesis in Zellweger's syndrome. Science 203:1107–1108

    Google Scholar 

  14. Heymans HSA, Oorthuys JWE, Nelck G, Wanders RJA, Schutgens RBH (1985) Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N Engl J Med 313:187–188

    CAS  PubMed  Google Scholar 

  15. Janssen G, Toppet S, Parmentier G (1982) Structure of the side chain of the C29 dicarboxylic bile acid occurring in infants with coprostanic acidaemia. J Lipid Res 23:456–465

    CAS  PubMed  Google Scholar 

  16. Kase BF, Björkhem I, Pedersen JI (1983) Formation of cholic acid from 3α,7α,12α-trihydroxy-5β-cholestanoic acid by rat liver peroxisomes. J Lipid Res 24:1560–1567

    CAS  PubMed  Google Scholar 

  17. Kase BF, Björkhem I, Haga P, Pedersen JI (1985) Defective peroxisomal cleavage of the C27-steroid side chain in the cerebrohepatorenal syndrome of Zellweger. J Clin Invest 75:427–435

    CAS  PubMed  Google Scholar 

  18. Kelley RJ (1983) The cerebrohepatorenal syndrome of Zellweger, morphologic and metabolic aspects. Am J Med Genet 16:503–517

    Article  CAS  PubMed  Google Scholar 

  19. Mool WJ, Dingemans KP, Bergh Weerman MA v d, Jöbsis AC, Heymans HSA, Barth PG (1983) Ultrastructure of the liver in the cerebrohepatorenal syndrome of Zellweger. Ultrastruct Pathol 5:135–144

    Google Scholar 

  20. Ogler H, Roels F, Cornelis A, Poll-The BT, Scotto JM, Odievre M, Saudubray JM (1985) Absence of hepatic peroxisomes in a case of infantile Refsum's disease. Scand J Clin Lab Invest 45: 767–768

    Google Scholar 

  21. Parmentier GG, Janssen GA, Eggermont EA, Eyssen HJ (1979) C27 bile acids in infants with coprostanic acidaemia and occurrence of a 3α,7α,12α-trihydroxy-5β-C29-dicarboxylic bile acid as a major component in their serum. Eur J Biochem 102:173–183

    Article  CAS  PubMed  Google Scholar 

  22. Poll-The BT, Saudubray JM, Ogier H, Schutgens RBH, Wanders RJA, Schrakamp G, Van den Bosch H, Trybels JMF, Poulos A, Moser HW, van Eldere J, Eyssen HJ (1986) Infantile Refsum's disease: biochemical findings suggesting a generalised dysfunction of peroxisomes. J Inherited Metab Dis (in press)

  23. Poulos A, Pollard AC, Mitchell JD, Wise G, Mortimer G (1984) Patterns of Refsum's disease. Phytanic acid oxidase deficiency. Arch Dis Child 59:222–229

    CAS  PubMed  Google Scholar 

  24. Poulos A, Sharp P, Whiting M (1984) Infantile Refsum's disease (phytanic acid storage disease): a variant of Zellwegers syndrome? Clin Genet 26:579–586

    CAS  PubMed  Google Scholar 

  25. Poulos A, Whiting MJ (1985) Identification of 3α,7α,12α-trihydroxy-5β-cholestan-26-oic acid, an intermediate in cholic acid synthesis in the plasma of patients with infantile Refsum's disease. J Inherited Metab Dis 8:13–17

    Article  CAS  PubMed  Google Scholar 

  26. Roels F, Goldfischer S (1979) Cytochemistry of human catalase: The demonstration of hepatic and renal peroxisomes by a high temperature procedure. J Histochem Cytochem 27:1471–1477

    CAS  PubMed  Google Scholar 

  27. Schutgens RBH, Romeyn GJ, Wanders RJA, van der Bosch H, Schrakamp G, Heymans HSA (1984) Deficiency of acyl CoA: dihydroxyacetone phosphate acyltransferase in fibroblasts from patients with Zellweger (cerebro-hepato-renal/syndrome). Biochem Biophys Res Commun 120:179–184

    Article  CAS  PubMed  Google Scholar 

  28. Schutgens RBH, Heymans HSA, Wanders RJA, Bosch H v d, Tager JM (1986) Peroxisomal disorders: A newly recognised group of genetic diseases. Eur J Pediatr 144:430–440

    Article  CAS  PubMed  Google Scholar 

  29. Scotto JM, Hadchouel M, Odievre M, Laudat MH, Saudubray JM, Dulac O, Beucler L, Beaune P (1982) Infantile phytanic acid storage disease, a possible variant of Refsum's disease: three cases including ultrastructural studies of the liver. J Inherited Metab Dis 5:83–90

    Article  CAS  PubMed  Google Scholar 

  30. Setchell KDR, Matsui A (1983) Serum bile acid analysis. Clin Chim Acta 127:1–17

    Article  CAS  PubMed  Google Scholar 

  31. Sjövall J, Lawson AM, Setchell KDR (1985) Mass spectrometry of bile acids. Methods Enzymol 111:63–113

    PubMed  Google Scholar 

  32. Spranger JW, Optiz JM, Bidder U (1971) Heterogeneity of chondrodysplasia punctata. Humangenetik 11:190–212

    CAS  PubMed  Google Scholar 

  33. Stokke O, Skrede S, EKJ, Björkhem I (1984) Refsum's disease, adrenoleucodystrophy and the Zellweger syndrome. Scand J Clin Lab Invest 44:463–464

    CAS  PubMed  Google Scholar 

  34. Tint GS, Dayal B, Batta AK, Shefer S, Cheng FW, Salen C, Mosbach EH (1978) Gas liquid chromatography-mass spectrometry of trimethylsilyl ethers of bile alchols. J Lipid Res 19:956–966

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: For abbreviations and trivial names of bile acids see Table 2 GC — gas-liquid chromatography; GC-MS — gasliquid chromatography-mass spectrometry; HPLC — high pressure liquid chromatography; TMS — trimethylsilyl ether; ZS —cerebrohepatorenal syndrome of Zellweger; RCP — rhizomelic chondrodysplasia punctata; VLCFA — very long chain fatty acids; DHAPAT — acyl coenzyme A: dihydroxyacetone phosphate acyl transferase

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, P.T., Lake, B.D., Hall, N.A. et al. Plasma bile acids in patients with peroxisomal dysfunction syndromes: analysis by capillary gas chromatography — mass spectrometry. Eur J Pediatr 146, 166–173 (1987). https://doi.org/10.1007/BF02343226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02343226

Key words

Navigation