Skip to main content
Log in

The role of polyols in the pathophysiology of hypergalactosemia

  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Cellular accumulation of galactitol has been suggested to cause the apparent dietary-independent, long-term complications in classic galactosemia. Experimental animals rendered hypergalactosemic by galactose feeding accumulate tissue galactitol, as well as millimolar quantities of galactose, and manifest biochemical, physiological and pathological abnormalities which are generally eliminated or curtailed by the concomitant administration of an aldose reductase inhibitor. This includes reduced cellular content of the cyclic polyol, myo-inositol, which like galactitol may function as an alternate intracellular osmolyte. However, the abnormalities detected in experimental galactosemic animals are more compatible with findings in experimental diabetes mellitus than in human galactosemia. Because patients with galactokinase deficiency fail to manifest the CNS and ovarian complications which characterize classic galactosemia. yet during long-term lactose restriction excrete comparable urinary quantities of galactitol, this polyol alone is not likely to play an important role during postnatal life in the pathogenesis of long-term complications. Notwithstanding, a role for either galactitol or myo-inositol in an intrauterine toxicity cannot be dismissed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GALT :

galactose-1-phosphate uridyltransferase

GALK :

galactokinase

AR :

aldose reductase

SDH :

sorbitol dehydrogenase

ARI :

aldose reductase inhibitor (s)

References

  1. Awata T, Sogo S, Yamagami Y, Yamamoto Y (1988) Effect of an aldosereductase inhibitor. CT-112, on healing of the corneal epithelium in galactose-fed rats. J Ocular Pharmalcol 4: 195–201

    Google Scholar 

  2. Bagnasco S, Uchida S, Balaban R, Kador PF, Burg M (1987) induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci USA 84: 1718–1720

    PubMed  Google Scholar 

  3. Bank N, Coco M, Aynedjian HS (1989) Galactose feeding causes glomerular hyperfusion: Prevention by aldose reductase inhibition. Am J Physiol 256: F994-F999

    PubMed  Google Scholar 

  4. Beasdale JE, Wallis P, MacDonald P, Johnston JM (1979) Changes in CDP-diglyceride: inositol transferase activity during rabbit lung development. Pediatr Res 13: 1182–1183

    PubMed  Google Scholar 

  5. Beigi B, O'Keefe M, Bowell B (1993) Ophthalmic findings in classical galactosaemia-prospective study. Br J Ophthalmol 77: 162–164

    PubMed  Google Scholar 

  6. Belman AL, Moshe SL, Zimmrman RD (1986) Computed tomographic demonstration of cerebral edema in a child with galactosemia. Pediatrics 78 606–609

    PubMed  Google Scholar 

  7. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341: 197–205

    Article  PubMed  Google Scholar 

  8. Berry GT, Johnson RA, Prantner JE, States B, Yandrasitz JR (1993) Myoinositol transport and metabolism in fetal bovine aortic endothelial cells. Biochem J 295: 863–869

    PubMed  Google Scholar 

  9. Berry GT, Palmieri M, Gross KC, Acosta PB, Henstenburg JA, Mazur A, Reynolds R, Segal S (1993) The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inher Metab Dis 16: 91–100

    Article  PubMed  Google Scholar 

  10. Berry GT, Prantner JE, States B, Yandrasitz JR (1994) The effect of glucose and galactose toxicity on myoinositol transport and metabolism in human skin fibroblasts in culture. Ped Res 35: 141–147

    Google Scholar 

  11. Beyer-Mears A, Cruz E, Nicholas-Alexandre J (1982) Sorbinil effect on sugart cataract progression and recovery: An initial study. Invest Ophthalmol Vis Sci Proc 21: 154

    Google Scholar 

  12. Beyer-Mears A, Cruz E, Nicholas-Alexandre J, Varagiannis E (1982) Sorbinil protection of lens protein components and cell hydration during diabetic cataract formation. Pharmacology 24: 193–200

    PubMed  Google Scholar 

  13. Beyer-Mears A, Farnsworth PN (1979) Diminished sugar cataractogeneesis by quercetin. Exp Eye Res 28: 709–716

    Article  PubMed  Google Scholar 

  14. Beyers-Mears A, Kelly K, Cruz E (1985) Synergism of sorbinil and normal diet on reversal of stage-II cataract. Pharmacology 31: 170–179

    PubMed  Google Scholar 

  15. Bohren KM, Bullock B, Wermuth B, Gabby KH (1989) The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem 264: 9547–9551

    PubMed  Google Scholar 

  16. Brivet M, Raymond JP, Konopka P, Odievre M, Lemonnier A (1989) Effect of lactation in a mother with galactosemia. J Peds 115: 280–282

    Google Scholar 

  17. Bruck E, Rapoport S (1945) Galactosemia in an infant with cataracts. Am J Dis Child 70: 267–276

    Google Scholar 

  18. Burg M (1988) Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Int 33: 635–641

    PubMed  Google Scholar 

  19. Calcutt NA, Tomlinson DR, Biswas S (1990) Coexistence of nerve conduction deficit with increased Na+, K+-ATPase activity in galactose-fed mice implications for polyol pathway and diabetic neuropathy Diabetes 39: 663–666

    PubMed  Google Scholar 

  20. Calcutt NA, Willars GB, Tomlinson DR (1988) Statil-sensitive polyol formation in nerve of galactose-fed mice. Metabolism 37: 450–453

    Article  PubMed  Google Scholar 

  21. Cameron NE, Cotter MA, Robertson S, Cox D (1992) Muscle and nerve dysfunction in rats with experimental galactosemia. J Exp Physiol 77: 89–108

    Google Scholar 

  22. Chang K, Tomlinson M, Jeffrey JR, Tilton RG, Sherman WR, Ackermann KE, Berger RA, Cicero TJ, Kilo C, Williamson JR (1987) Galactose ingestion increases vascular permeability and collagen solubility in normal male rats. J Clin Invest 79: 367–373

    PubMed  Google Scholar 

  23. Chiou SH, Chylack LT JR, Bunn HF, Kinoshita JH (1980) Role of nonenzymatic glycosylation in experimental cataract formation. Biochem Biophys Res Commun 95: 894–901

    Article  PubMed  Google Scholar 

  24. Chung S, LaMendola J (1989) Cloning and sequence determination of human placental aldose reductase gene. J Biol Chem 264: 14775–14777

    PubMed  Google Scholar 

  25. Cubitt AB, Gershengorn MC (1989) Characterization of a salt-extractable phosphatidylinositol synthase from rat pituitary-tumor membranes. Biochem J 257: 639–644

    PubMed  Google Scholar 

  26. Daniels BS, Hostettet TH (1991) Functional and structural alterations of the glomerular permeability barrier in experimental galactosemia. Kidney Int 39: 1104–1111

    PubMed  Google Scholar 

  27. Das A, Frank RN, Zhang NL (1990) Sorbinil does not prevent galactoseinduced glomerular capillary basement membrane thickening in the rat. Diabetologia 33: 515–521

    Article  PubMed  Google Scholar 

  28. Datiles MB, Fukui H, Kuwabara T, Kinoshita JH (1982) Galactose cataract prevention with sorbinil, an aldose reductase inhibitor: A light microscopic study. Invest Ophalmol Vis Sci 22: 174–179

    Google Scholar 

  29. Datiles MB, Kador PF, Kashima K, Kinoshita JH, Sinha A (1990) The effects of sorbinil, an aldose reductase inhibitor, on the cornel endothelium in galactosemic dogs. Invest Ophthalmol Vis Sci 31: 2201–2204

    PubMed  Google Scholar 

  30. Donnell GN, Bergren WR, Koch R (1969) Abnormal galactose metabolism in man. In: McIsaac WM, Farrell G (eds) Advances in mental sciences, congenital mental retardation, vol 1. Austin, TX, The University of Texas Press, pp 87–99

    Google Scholar 

  31. Dvornik D, Simard-Duquesne N, Kraml M, Gabbay K, Kinoshita J, Varma S, Merola L (1973) Polyol accumulation in galactosemic and diabetic rats: Control by an aldose reductase inhibitor. Science 182: 1146–1148

    PubMed  Google Scholar 

  32. Dvornik D (1987) Aldose reductase inhibition: An aproach to the prevention of diabetic complications. Porte D (ed) McGraw-Hill NY

    Google Scholar 

  33. Dvornik D, Millen J, Hicks DR, Kraml M (1994) Tolrestat pharmacokinetics in rat peripheral nerve. J Diab Comp 8: 18–26

    Article  Google Scholar 

  34. Eisenberg F Jr (1967) D-myo-inositol-1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem 242: 1375–1382

    PubMed  Google Scholar 

  35. Engerman RL, Kem TS (1993) Aldose reductase inhibition fails to prevent retinopathy in diabetic and galactosemic dogs. Diabetes 42: 820–825

    PubMed  Google Scholar 

  36. Engerman RL, Kern TS, Larson ME (1994) Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 37: 141–144

    Article  PubMed  Google Scholar 

  37. Frank RN, Keim RJ, Kennedy A, Frank KW (1983) Galactose-induced retinal capillary basement membrane thickening: Prevention by sorbinil. Invest Ophthalmol Vis Sci 24: 1519–1524

    PubMed  Google Scholar 

  38. Frank RN, Dutta S, Frank SE (1987) Cerebral cortical capillary basement membrane thickening in galactosaemic rats. Diabetologia 30: 739–744

    Article  PubMed  Google Scholar 

  39. Gabbay KH, Kinoshita JH (1972) Mechanism of development and posible prevention of sugar cataracts. Isr J Med Sci 18: 1557–1561

    Google Scholar 

  40. Gabbay KH (1975) Hyperglycemia, polyol metabolism and complications of diabetes mellitus. Annu Rev Med 26: 521–535

    Article  PubMed  Google Scholar 

  41. Garcia-Perez A, Martin B, Murphy HR, Vehida S, Murer H, Cowley BD, Handler JS, Burg MB (1989) Molecular cloning of cDNA coding for kidney aldose reductase: Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress J Biol Chem 264: 16815–16821

    PubMed  Google Scholar 

  42. Garcia-Perez A, Burg MB (1991) Role of organic osmolytes in adaptation of renal cells to high osmolarity. J Membrane Biol 119: 1–13

    Article  Google Scholar 

  43. Gitzelmann R, Steinmann B (1984) Galactosemia: How does long-term treatment change the outcome? Enzyme 32: 37–46

    PubMed  Google Scholar 

  44. Graham A, Hedge PJ, Powell SJ, Riley J, Brown L, Gammack A, Carey F, Markham AF (1989) Nucleotide sequence of cDNA for human aldose reductase. Nucleic Acids Res 17: 8368

    PubMed  Google Scholar 

  45. Graham A, Brown L, Hedge PJ, Gammack AJ, Markham AF (1991) Structure of the human aldose reductase gene. J Biol Chem 266: 6872–6877

    PubMed  Google Scholar 

  46. Green DA, Lattimer SA, Sima AAF (1987) Sorbitol, phosphoinositides, and sodium-potassium-ATPsse in the pathogenesis of diabetic complications. N Engl J Med 316: 599–606

    PubMed  Google Scholar 

  47. Griffey RH, Eaton RP, Gasparovic C, Abbitt W (1987) Galactose neuropathy: Structural changes evaluated by nuclear magnetic resonance spectroscopy. Diabetes 36:776–778

    PubMed  Google Scholar 

  48. Grundmann U, Boan H, Obermeier R, Amann E (1990) Cloning and prokaryotic expressions of a biologically active human placental aldose reductase. DNA Cell Biol 9: 149–157

    PubMed  Google Scholar 

  49. Gullans SR, Verbalis JG (1993) Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 44: 289–301

    Article  PubMed  Google Scholar 

  50. Hauser G, Finelli VM (1963) The biosynthesis of free and phosphatide myo-inositol from glucose by mammalian tissue slices. J Biol Chem 238: 3224–3228

    PubMed  Google Scholar 

  51. Handler HS, Kwon HM (1993) Regulation of renal cell organic osmolyte transport by tonicity. Am J Physiol 265 (Cell Physiol 34) C1449-C1455

    PubMed  Google Scholar 

  52. Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240: 877–882

    PubMed  Google Scholar 

  53. Henein M, Devamanoharan PS, Ramachandran S, Varma SD (1992) Prevention of galactose cataract by pyruvate. Lens Eye Toxic Res 9: 25–36

    PubMed  Google Scholar 

  54. Henry DN, DelMonte M, Greene DA, Killen PD (1993) Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells. J Clin Invest 92: 617–623

    PubMed  Google Scholar 

  55. Hers HG (1960) Le mechanisme de la formation du fructose seminal et du fructose foetal. Biochim Biophys Acta 37: 127–138

    Article  PubMed  Google Scholar 

  56. Hohman TC, Carper D, Dasgupta S, Kaneko M (1991) Osmotic stress induces aldose reductase in glomerular endothelial cells. Adv Exp Med Biol 284: 139–152

    PubMed  Google Scholar 

  57. Holub BJ (1986) Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr 6: 563–597

    Article  PubMed  Google Scholar 

  58. Hu T-S, Datiles M, Kinoshita JH (1983) Reversal of galactose cataract with sorbinil in rats. Invest Ophthalmol Vis Sci 24: 640–644

    PubMed  Google Scholar 

  59. Hu T-S, Merola LO, Kuwabara T, Kinoshita JH (1984) Prevention and reversal of galactose cataract in rats with topical sorbinil. Invest Ophthalmol Vis Sci 25: 603–605

    PubMed  Google Scholar 

  60. Huttenlocher, PR, Hillman RE, Hsia YE (1970) Pseudotumor cerebri in galactosemia. J Pediatrics 76: 902–905

    Google Scholar 

  61. Jakobs C, Kleijer WJ, Baker HD, Van Gennip AH, Przyrembel, Niermeije MF (1988) Dietary restriction of maternal lactose intake does not prevent accumulation of galactitol in the amniotic fluid of fetuses affected with galactosemia. Prenatal Diagnosis 8: 641–645

    PubMed  Google Scholar 

  62. Jeffrey J (1988) Sorbitol dehydrogenase. In: Meister A (ed) Advances in enzymology, vol. 61. John Wiley & Sons, pp 47–106

  63. Kador PF, Akagi Y, Terubayashi H, Wyman M, Kinoshita JH (1988) Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 106: 1099–1102

    PubMed  Google Scholar 

  64. Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, Kinoshita JH (1990) Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 108: 1301–1309

    PubMed  Google Scholar 

  65. Kaneko M, Carper D, Nishimura C, Millen J, Bock M, Hohman T (1990) Induction of aldose reductase expression in rat kidney mesangial cells and Chinese hamster ovary cells under hypertonic conditions. Exp Cell Res 188: 135–140

    Article  PubMed  Google Scholar 

  66. Kato K, Nakayama K, Ohta M, Murakami N, Murakami K, Mizota M, Miwa I, Okuda J (1990) Effects of novel hydantoin derivatives with aldose reductase inhibiting activity on galactose-induced cataract in rats. Jpn J Pharmacol 54: 355–364

    PubMed  Google Scholar 

  67. Kelly K, Cruz E, Tanis D, Beyer-Mears A (1983) Reversal of Stage II galactose catarct by combination of sorbinil and normal diet. Invest Ophthalmol Vis Sci 25: 269

    Google Scholar 

  68. Kern TS, Engerman RL (1991) Retinal polyol and myo-inositol in galactosemic dogs given an aldose-reductase inhibitor. Invest Ophthalmol Vis Sci 32: 3175–3177

    PubMed  Google Scholar 

  69. Kinoshita JH (1974) Mechanisms initiating cataract formation. Proctor Lecture. Invest Ophthalmol 13: 713–724

    PubMed  Google Scholar 

  70. Kinoshita JH, Dvornik D, Krami M, Gabbay KH (1968) The effect of aldose reductase inhibitor on the galactose exposed rabbit lens. Biochim Biophys Acta 158: 472–475

    PubMed  Google Scholar 

  71. Kinoshita JH, Nishimura C (1988) The involvement of aldose reductase in diabetic complications. Diabetes/Metab Rev 4: 323–337

    Google Scholar 

  72. Lambourne JE, Brown AM, Calcutt N (1988) Adenosine triphosphatase in nerves and ganglia of rats with streptozotocin-induced diavetes or galactosemia; effects of aldose reductase inhibition. Diabetologia 31: 379–384

    PubMed  Google Scholar 

  73. Lightman S, Rechthand E, Terubayashi H, Palestine A, Rapoport S, Kador P (1987) Permeability changes in blood-retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors. Diabetes 36: 1271–1275

    PubMed  Google Scholar 

  74. Litman N, Kanter AI, Finberg L (1975) Galactokinase deficiency presenting as pseudotumor cerebri. J Pediatr 86: 410–412

    PubMed  Google Scholar 

  75. Llewelyn JG, Patel NJ, Thomas PK, Stribling D (1987) Sodium, potassium adenosine triphosphatase activity in peripheral nerve tissue of galactosaemic rats. Effects of aldose reductase inhibition. Diabetologia 30: 971–972

    Article  PubMed  Google Scholar 

  76. Lou MF, Dickerson JR, Chandler ML, Brazzell K, York BM (1989) The prevention of biochemical changes in lens, retina and nerve of galactosemic dogs by the aldose reductase inhibitor AL01576 J Ocular Pharm 5: 233–240

    Google Scholar 

  77. Maeda T, Eisenberg F Jr (1980) Purification, structure and catalytic properties of L-myo-Inositol-1-phosphate synthase from rat testis J Biol Chem 255: 8458–8464

    PubMed  Google Scholar 

  78. McLean WG (1988) Pressure-induced inhibition of fast axonal transport of proteins in the rabbit vagus nerve in galactose neuropathy: prevention by an aldose reductase inhibitor. Diabetologia 31: 443–448

    Article  PubMed  Google Scholar 

  79. Meyer WR, Doyle MB, Grifo JA, Lipetz KJ, Oates PJ, DeCherney AH, Diamond MP (1992) Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am J Obstet Gynecol 167: 1837–1843

    PubMed  Google Scholar 

  80. Mizisin AP, Powell HC, Myers RR (1986) Edema and increased endoneurial sodium in galactose neuropathy. Reversal with an aldose reductase inhibitor. J Neurol Sci 74: 35–43

    Article  PubMed  Google Scholar 

  81. Mizisin AP, Powell HC (1993) Schwann cell injury is attenuated by aldose reductase inhibition in galactose intoxication. J Neuropath Exp Neurol 52: 78–86

    PubMed  Google Scholar 

  82. Nagaraj RH, Monnier VM (1990) Non-tryptophan fluorescence and high molecular weight protein formation in lens crystallins of rats with chronic galactosemia: prevention by the aldose reductase inhibitor sorbinil. Exp Eye Res 51: 411–418

    Article  PubMed  Google Scholar 

  83. Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370

    PubMed  Google Scholar 

  84. Nishimura C, Lou MF, Kinoshita JH (1987) Depletion of myo-inositol and amino acids in galactosemic neuropathy. J Neurochem 49: 290–295

    PubMed  Google Scholar 

  85. Okuda J, Yashima K, Inagaki K, Miwa I (1985) Effects of an aldose reductase inhibitor, 1-[p-Bromophenyl)-sulfonyl]hydantoin, on cataract formation and tissue polyol levels in galactosemic rats. Chem Pharm Bull 33: 2990–2995

    PubMed  Google Scholar 

  86. Parmar NS, Ghosh MN (1979) Effect of gossypin, a flavonoid, on the formation of galactose-induced cataracts in rats. Exp Eye Res 29: 229–232

    Article  PubMed  Google Scholar 

  87. Peterson MJ, Sarges R, Aldinger CE, MacDonald DP (1979) CP-45,634: A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats. Metabolism 28: 456–461

    Article  PubMed  Google Scholar 

  88. Pitkänen E, Pitkänen OM (1990) Plasma 1,5-anhydroglucitol in experimental galactosemia in the rat. Experientia 46: 85–87

    Article  PubMed  Google Scholar 

  89. Ribaya-Mercado JD, Gershoff SN (1986) Effects of magnesium on galactose-induced cataract formation and lens aldose reductase activity in rats. Nutri Res 6: 699–708

    Google Scholar 

  90. Richard S, Tamas C, Sell DR, Monnier VM (1991) Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia — Relationship to pentosidine cross-links. Diabetes 40: 1049–1056

    PubMed  Google Scholar 

  91. Robison WG, Kador PF, Kinoshita JH (1983) Retinal capillaries: Basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221: 1177–1179

    PubMed  Google Scholar 

  92. Robinson WG, Kador PF, Akagi Y, Kinoshita JH, Gonzalez R, Dvornik D (1986) Prevention of basement membrane thickening in retinal capillares by a novel inhibitor of aldose reductase, tolrestat. Diabetes 35: 295–299

    PubMed  Google Scholar 

  93. Robison WG, Nagata M, Laver N, Hohman TC, Kinoshita JH (1989) Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest Ophthalmol Vis Sci 30: 2285–2292

    PubMed  Google Scholar 

  94. Robinson WG, Tillis TN, Laver N, Kinoshita JH (1990) Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res 50: 355–366

    Article  PubMed  Google Scholar 

  95. Roe TF, Ng WG, Bergren WR, Donnell GN (1973) Urinary galactitol in galactosemic patients. Biochem Med 7: 266–273

    Article  PubMed  Google Scholar 

  96. Schwartz GJ, Zavilowitz BJ, Radice AD, Perez-Garcia A, Sands JM (1992) Maturation of aldose reductase expression in the neonatal rat inner medulla. J Clin Invest 90: 1275–1283

    PubMed  Google Scholar 

  97. Schweitzer S, Shin S, Jacobs S, Brodehl J (1993) Long-term outcome in 134 patients with galactosemia. Eur J Pediatr 132: 36–43

    Article  Google Scholar 

  98. Segal S, Berry GT (1995) Disorders of galactose metabolism. In: Scriver CH, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited diseases, 7th edn, vol I. McGraw-Hill, NY, pp 967–1000

    Google Scholar 

  99. Segawa M, Hirata Y, Fujimori S, Okada K (1988) The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism 37: 454–460

    Article  PubMed  Google Scholar 

  100. Sigal SH, Yandrasitz JR, Berry, GT (1993) Kinetic evidence for compartmetalization of myo-inositol in hepatocytes. Metabolism 42: 395–401

    Article  PubMed  Google Scholar 

  101. Simard-Duquesne N, Greselin E, Dubuc J, Dvornik D (1985) The effects of a new aldose reductase inhibitor (Tolrestat) in galactosemic and diabetic rats. Metabolism 34: 885–892

    Article  PubMed  Google Scholar 

  102. Simard-Duquesne N, Greselin E, Gonzalez R, Dvornik D (1985) Prevention of cataract development in severely galactosemic rats by the aldose reductase inhibitor, tolrestat. Proc Soc Exp Biol Med 178: 599–605

    PubMed  Google Scholar 

  103. Simmons DA, Winegrad AI (1989) Mechanism of glucose-induced (Na+, K+)-ATPase inhibition in aortic wall of rabbits. Diabetologia 32: 402–408

    Article  PubMed  Google Scholar 

  104. Sredy J, Sawicki DR, Notvest RR (1991) Polyol pathway activity in nervous tissues of diabetic and galactosefed rats: Effect of dietary galactose withdrawal or tolrestat intervention therapy. J Diabetic Complications 5: 42–47

    Article  Google Scholar 

  105. Srivastava SK, Ansari, NH, Hair GA, Awasthi S, Das B (1986) Activation of human erythrocyte, brain: aorta, muscle, and ocular tissue aldose reductase. Metabolism 35: 114–118

    Article  PubMed  Google Scholar 

  106. Stambolian D (1988) Galactose and cataract. Surv Ophthalmol 32: 333–349

    Article  PubMed  Google Scholar 

  107. Terubayashi H, Tsuji T, Matumoto Y, Ikebe H, Akagi Y (1989) Movement of regenerated lens epithelial cells in 50% galactose cataract and an aldose reductase inhibitor. Nippon-Ganka-Gakkai-Zasshi 93: 1044–1053

    PubMed  Google Scholar 

  108. Thurston JH, Sherman WR, Hauhart RE, Kloepper RF (1989) myo-Inositol: A newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr Res 26: 482–485

    PubMed  Google Scholar 

  109. Tilton RG, Pugliese G, LaRose LS, Faller AM, Chang K, Province MA, Williamson JR (1991) Discordant effects of the aldose reductase inhibitor, sorbinil, on vascular structure and function in chronically diabetic and galactosemic rats. J Diabetic Complications 5: 230–237

    Article  Google Scholar 

  110. Tilton RG, Chang K, Weigel C, Kilo C, Williamson JR (1988) Increased ocular blood flow and 125I-albumin permeation in galactose-fed rats: inhibition by sorbinil. Invest Ophthalmol Vis Sci 29: 861–868

    PubMed  Google Scholar 

  111. Tsuji T, Okamoto S, Ikebe H, Terubayashi H, Akagi Y, Tanimoto T (1993) Prefeeding of aldose reductase inhibitor inhibits galactose cataract. Nippon-Ganka-Gakkai-Zasshi 97: 455–459

    PubMed  Google Scholar 

  112. Turner, AJ, Flynn, TG (1982) In: Enzymology of carbonyl metabolism: Aldehyde dehydrogenase and aldo/keto reductase. Weiner H, Wermuth B (eds). Alan R Liss, Inc, NY, pp 401–402

    Google Scholar 

  113. Uchida, KS, Yanauchi AK, Preston KAS, Kwon HM, Handler JS (1993) Medium tonicity regulates expression of the Na+-and Cl-dependent betaine transporter in Madin-Darby canine kidney cells by increasing transcription of the transporter gene. J Clin Invest 911: 1604–1607

    Google Scholar 

  114. Unakar NJ, Tsui JY (1983) Inhibition of galactose-induced alterations in ocular lens with sorbinil. Exp Eye Res 36: 685–694

    Article  PubMed  Google Scholar 

  115. Unakar NJ, Tsui JY, Johnson MJ (1989) Prefeeding of aldose reductase inhibitor and galactose cataractogenesis. Curr Eye, Res 8: 997–1010

    Google Scholar 

  116. Unakar NJ, Tsui JY, Johnson MJ, Dang L (1991)In utero and milk-mediated effect of aldose reductase inhibitor on galactose cataracts. Exp Eye Res 53: 665–676

    Article  PubMed  Google Scholar 

  117. Unakar NJ, Tsui JY, Anthony P, Johnson MJ (1993) Aldose reductase inhibitors and galactose toxicity in neonatal and maternal rat lenses. J Ocular Pharm 9: 341–353

    Google Scholar 

  118. Van Heyningen R (1959) Formation of polyols by the lens of the rat with ‘sugar’ cataract. Nature 184: 194–205

    Google Scholar 

  119. Vannas A, Hogan MJ, Golbus MS, Wood I (1975) Lens changes in a galactosemic fetus. Am J Ophthalmol 80: 726–733

    PubMed  Google Scholar 

  120. Varma SD, Kinoshita JH (1976) Topical treatment of galactose cataracts. Docum Ophthalmol Proc Ser 8: 305–309

    Google Scholar 

  121. Vinores SA, McGehee R, Lee A, Gadegbeku C, Campochiaro PA (1990) Ultrastructural localization of blood-retinal barrier breakdown in diabetic and galactosemic rats. J Histochem Cytochem 38: 1341–1352

    PubMed  Google Scholar 

  122. Vinores SA, Van Niel E, Swerdloff JL, Campochiaro PA (1993) Electron microscopic immunocytochemical evidence for the mechanism of blood-retinal barrier breakdown in galactosemic rats and its association with aldose reductase expression and inhibition. Exp Eye Res 57: 723–735

    Article  PubMed  Google Scholar 

  123. Vogel R, Gaifman M, Nitzan M (1976) Increased intracranial pressure in galactosemia. Clin Pediatr 15: 386–388

    Google Scholar 

  124. Wadhwani KC, Caspers-Velu LE, Murphy VA, Smith QR, Kador PF, Rapoport SI (1989) Prevention of nerve edema and increased blood-nerve barrier permeability-surface area product in galactosemic rats by aldose reductase or thromboxane synthetase inhbitors. Diabetes 38: 1469–1477

    PubMed  Google Scholar 

  125. Wang K, Bohren KM, Gabbay KH (1993) Characterization of the human aldose reductase gene promoter. J Biol Chem 268: 16052–16058

    PubMed  Google Scholar 

  126. Waterbury LD, Mahoney JM, Pfister JR (1979) Inhibition of lens aldose reductase (A.R.) by 7-dimethylsulfamoyl-xanthone-2-carboxylic acid (RS 7535). Fed Proc 38: 254A

    Google Scholar 

  127. Willars GB, Lambourne JE and Tomlinson DR (1987) Does galactose feeding provide a valid model of consequences of exaggerated polyol-pathway flux in peripheral nerve in experimental diabetes? Diabetes 36: 1425–1431

    PubMed  Google Scholar 

  128. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Van Den Enden M, Kilo C, Tilton RG (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813

    PubMed  Google Scholar 

  129. Wilson DK, Bohren KM, Gabbay KH, Quiocho FA (1992) An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257: 81–84

    PubMed  Google Scholar 

  130. Winegrad AI (1986) Does a common mechanism induce the diverse complications of diabetes? Diabetes 6: 396–406

    Google Scholar 

  131. Wong YH, Kalmbach SJ, Hartman BK, Sherman WR (1987) Immunohistochemical staining and enzyme activity measurements show myoinositol-1-phosphate synthase to be localized in the vasculature of brain. J Neurochem 48: 1434–1442

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, G.T. The role of polyols in the pathophysiology of hypergalactosemia. Eur J Pediatr 154 (Suppl 2), S53–S64 (1995). https://doi.org/10.1007/BF02143805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143805

Keywords

Navigation