Skip to main content
Log in

Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A comparative study of the charge transport kinetics of oppositely charged lipophilic probe ions in lipid bilayer membranes of varying composition was carried out by using the charge pulse technique. The ions investigated were the chemical analogs tetraphenylborate, tetraphenylarsonium and tetraphenylphosphonium. Membrane structural aspects investigated were the type of solvent used in membrane formation, sterol content, and the nature of the principal lipid. The overall results indicate that the character of the transport process involving positive lipophilic probes is, in contrast to positively charged carrier complexes, very similar to that deduced in previous studies of negative lipophilic ions. The major effect on transport of lipophilic ions of both signs using differentn-alkane solvents appears to be due to changes in the thickness of the membrane hydrocarbon region. Positive ion transport is relatively sensitive to the inclusion of sterols of several types in both monoolein and lecithin membranes, as compared with negative ion transport, suggesting that a combination of sterol-induced dipolar field and fluidity changes are involved. Results involving several variations in lipid structure, with the possible exception of hydrocarbon tail saturation, when interpreted in terms of dipolar field changes deduced under the assumption of charge independent fluidity effects, are consistent with monolayer surface potential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, N.K.1968. The Physics and Chemistry of Surfaces. Dover, New York

    Google Scholar 

  2. Andersen, O.S., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35

    Google Scholar 

  3. Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.Biophys. J. 15:795

    Google Scholar 

  4. Benz, R., Cros, D. 1978. Influence of sterols on ion transport through lipid bilayer membranes.Biochim. Biophys. Acta 506:265

    Google Scholar 

  5. Benz, R., Fröhlich, O., Läuger, P. 1976. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers.Biochim. Biophys. Acta 464:465

    Google Scholar 

  6. Benz, R., Fröhlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323

    Google Scholar 

  7. Benz, R., Gisin, B.F.1978. Influence of membrane structure on ion transport through lipid bilayer membranes.J. Membrane Biol. 40:293

    Google Scholar 

  8. Benz, R., Janko, K. 1976. Voltage-induced capacitance relaxation of lipid bilayer membrane. Effect of membrane composition.Biochim. Biophys. Acta 455:721

    Google Scholar 

  9. Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171

    Google Scholar 

  10. Benz, R., Läuger, P. 1977. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure.Biochim. Biophys. Acta 468:245

    Google Scholar 

  11. Benz, R., Läuger, P., Janko, K. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge pulse relaxation studies.Biochim. Biophys. Acta 455:701

    Google Scholar 

  12. Benz, R., Stark, G., Janko, K., Läuger, P.1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  13. Bruner, L.J. 1975. The interaction of hydrophobic ions with lipid bilayer membranes.J. Membrane Biol. 22:125

    Google Scholar 

  14. Demel, R.A., Bruckdorfer, K.R., Van Deenen, L.L.M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+.Biochim. Biophys. Acta 255:321

    Google Scholar 

  15. Fettiplace, R., Andrews, D.M., Haydon, D.A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277

    Google Scholar 

  16. Haydon, D.A. 1975. Functions of the lipid in bilayer ion permeability.Ann. N.Y. Acad. Sci. 264:2

    Google Scholar 

  17. Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187

    Google Scholar 

  18. Janko, K., Benz, R. 1977. Properties of lipid bilayer membranes made from lipids containing phytanic acid.Biochim. Biophys. Acta 470:8

    Google Scholar 

  19. Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  20. LeBlanc, O.H., Jr. 1970. Single ion conductances in lipid bilayers.Biophys. J. (Abstr.) 10:94a

    Google Scholar 

  21. Liberman, Ye.A., Topaly, V.P. 1969. Permeability of biomolecular phospholipid membranes for fat soluble ions.Biophysics 14:477

    Google Scholar 

  22. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. p. 71. Academic Press, New York

    Google Scholar 

  23. Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Nat. Acad. Sci. USA 69:3561

    Google Scholar 

  24. Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes.Biophys. J. 9:1160

    Google Scholar 

  25. Pagano, R.E., Ruysschaert, J.M. Miller, I.R. 1972. The molecular composition of some lipid bilayer membranes in aqueous solution.J. Membrane Biol. 10:11

    Google Scholar 

  26. Paltauf, F., Hauser, H., Phillips, M. C. 1971. Monolayer characteristics of some 1,2-diacyl, 1-alkyl-2-acyl and 1,2-dialkyl phospholipids at the airwater interfaces.Biochim. Biophys. Acta 249:539

    Google Scholar 

  27. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions of four relevant electrostatic problems.Nature (London) 221:844

    Google Scholar 

  28. Racker, E., Hinkle, P.C. 1974. Effect of temperature on the function of a proton pumpJ. Membrane Biol. 17:181

    Google Scholar 

  29. Szabo, G. 1974. Dual mechanism for the action of cholesterol on membrane permeability.Nature (London) 257:47

    Google Scholar 

  30. Szabo, G. 1976. The influence of dipole potentials on the magnitude and the kinetics of ion transport in lipid bilayer membranes.In: Extreme Environment: Mechanisms of Microbial Adaptation. M.R. Heinrich, editor. p. 321. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickar, A.D., Benz, R. Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J. Membrain Biol. 44, 353–376 (1978). https://doi.org/10.1007/BF01944229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01944229

Keywords

Navigation