Skip to main content
Log in

Development of the myocardial contractile system

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Recent studies regarding developmental changes in the myocardial contractile system from fetal, newborn, and adult animals are reviewed. From the data obtained so far, we conclude that in the early fetus myocardial contraction is mainly dependent on Ca which enters via the sarcolemma. Ca release from the sarcoplasmic reticulum is minimal. The role of the sarcoplasmic reticulum as a source of contractile Ca increases and the role of Ca influx across the sarcolemma in contractile system decreases with development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bers, D. M., and Langer, G. A., Uncoupling cation effects on cardiac contractility and sarcolemmal Ca binding. Am. J. Physiol.237 (1979) H332–341.

    CAS  PubMed  Google Scholar 

  2. Boland, R., and Martonosi, A., Developmental changes in the composition and function of sarcoplasmic reticulum. J. biol. Chem.249 (1974) 612–623.

    Article  CAS  PubMed  Google Scholar 

  3. Chemla, D., Lecarpentier, Y., Martin, J. L., Clergue, M., Antonetti, A., and Hatt, P. Y., Relationship between inotropy and relaxation in rat myocardium. Am. J. Physiol.250 (1986) H 1008–1016.

    Google Scholar 

  4. Davies, P., Dewar, J., Tyman, M., and Ward, R., Postnatal changes in the length-tension relationship of cat papillary muscles. J. Physiol.253 (1975) 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabiato, A., and Fabiato, F., Calcium induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and newborn rat ventricles. Ann. N.Y. Acad. Sci.307 (1978) 491–522.

    Article  CAS  PubMed  Google Scholar 

  6. Fiedman, W. F., The intrinsic physiologic properties of the developing heart. Prog. cardiovasc. Dis.15 (1972) 87–111.

    Article  Google Scholar 

  7. Koch-Weser, J., Effect of changes on strength and time course of contraction of papillary muscle. Am. J. Physiol.204 (1963) 451–457.

    Article  CAS  PubMed  Google Scholar 

  8. Lompre, A. M., Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Devl Biol.84 (1981) 286–290.

    Article  CAS  Google Scholar 

  9. Mahony, L., and Jones, L. R., Developmental changes in cardiac sarcoplasmic reticulum in sheep. J. biol. Chem.261 (1986) 15257–16265.

    Article  CAS  PubMed  Google Scholar 

  10. Marban, E., and Wier, W. G., Ryanodine as a tool to determine the contributions of calcium transient and contraction of cardiac Purkinje fibers. Circ. Res.56 (1985) 133–138.

    Article  CAS  PubMed  Google Scholar 

  11. Maylie, J. G., Excitation-contraction coupling in neonatal and adult myocardium of cat. Am. J. Physiol.242 (1982) H 834–843.

    Google Scholar 

  12. Nakanishi, T., Okuda, H., Kamata, K., Abe, K., Sekiguchi, M. and Takao, A., Development of myocardial contractile system in the fetal rabbit. Pediatr. Res.22 (1987) 201–207.

    Article  CAS  PubMed  Google Scholar 

  13. Nakanishi, T., and Jarmakani, J. M., Developmental changes in myocardial function and subcellular organelles. Am. J. Physiol.246 (1984) H 615–625.

    Google Scholar 

  14. Nakanishi, T., Nagae, M., and Takao, A., Developmental changes in contractile protein ATPase in the rabbit heart. Circ. Res.58 (1986) 890–895.

    Article  CAS  PubMed  Google Scholar 

  15. Nakanishi, T., and Jarmakani, J. M., The effect of acetyl strophanthidin on myocardial function and potassium and calcium exchange in the newborn rabbit. Am. J. Physiol.241 (1981) H 637–645.

    Google Scholar 

  16. Nakanishi, T., Shimizu, T., Uemura, S., and Jarmakani, J. M., Ouabain effect on myocardial mechanical function and sodium pump in the fetus. Am. J. Physiol.246 (1984) H213-H221.

    CAS  PubMed  Google Scholar 

  17. Nakanishi, T., Okuda, H., Nakazawa, M., and Takao, A., Effect of acidosis on contractile function in the newborn rabbit heart. Pediatr. Res.19 (1985) 482–488.

    Article  CAS  PubMed  Google Scholar 

  18. Nakanishi, T., Seguchi, M., and Takao, A., Intracellular calcium concentrations in the newborn myocardium. Circulation76 (1987) 455.

    Google Scholar 

  19. Nayler, W. G. and Fassold, E., Calcium accumulation and ATPase activity of cardiac sarcoplasmic reticulum before and after birth. Cardiovasc. Res.11 (1977) 213–237.

    Article  Google Scholar 

  20. Okuda, H., Nakanishi, T., Nakazawa, M., and Takao, A., Effect of isoproterenol on myocardial mechanical function and cyclic AMP content in the fetal rabbit. J. molec. cell. Cardiol.19 (1987) 151–157.

    Article  CAS  Google Scholar 

  21. Pagani, E. D., and Julian, F. J., Rabbit papillary muscle myosin isozymes and the velocity of myosin shortening. Circ. Res.54 (1984) 586–594.

    Article  CAS  PubMed  Google Scholar 

  22. Page, E., and Buecker, J. L., Development of dyadic junctional complexes between sarcoplascmic reticulum and plasmalemma in rabbit left ventricular myocardial cell. Circ. Res.48 (1981) 519–522.

    Article  CAS  PubMed  Google Scholar 

  23. Park, I., Michael, L. H., and Driscoll, D. J., Comparative response of the developing canine myocardium to inotropic agents. Am. J. Physiol.242 (1982) H13-H18.

    CAS  PubMed  Google Scholar 

  24. Park, M. K., Sheridan, P. H., Morgan, W. W., and Beck, N., Comparative inotropic response of newborn and adult rabbit papillary muscle to isoproterenol and calcium. Dev. pharmac. Ther.1 (1980) 70–82.

    Article  CAS  Google Scholar 

  25. Pegg, W., and Michalak, M., Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am. J. Physiol.252 (1987) H 22–31.

    Google Scholar 

  26. Saeki, Y., Kato, C., Totsuka, T., and Yanagisawa, K., Mechanical properties and ATPase activity in glycerinated cardiac muscle of hyperthyroid rabbit. Pflügers Arch. (1988) in press.

  27. Scheuer, J., and Bhan, A. K., Cardiac contractile protein. Circ. Res.45 (1979) 1–12.

    Article  CAS  PubMed  Google Scholar 

  28. Seguchi, M., Harding, J. A., and Jarmakani, J. M., Developmental change in the function of sarcoplasmic reticulum. J. molec. cell. Cardiol.18 (1986) 189–195.

    Article  CAS  Google Scholar 

  29. Seguchi, M., Jarmakani, J. M., George, B. L., and Harding, J. A., Effect of Ca antagonists on mechanical function in the neonatal heart. Pediatr. Res.20 (1986) 838–842.

    Article  CAS  PubMed  Google Scholar 

  30. Sissman, N. J., Developmental landmarks in cardiac morphogenesis. Am. J. Cardiol.25 (1970) 141–147.

    Article  CAS  PubMed  Google Scholar 

  31. Sutko, J., and Willerson, J. T., Ryanodine alteration of the contractile state of rat ventricular myocardium. Circ. Res.46 (1980) 332–343.

    Article  CAS  PubMed  Google Scholar 

  32. Urthaler, F., Walker, A. A., Kawamura, K., Hefner, L., and James, T. N., Canine atrial and ventricular muscle mechanics studied as a function of age. Circ. Res.42 (1978) 703–713.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, T., Seguchi, M. & Takao, A. Development of the myocardial contractile system. Experientia 44, 936–944 (1988). https://doi.org/10.1007/BF01939887

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939887

Key words

Navigation