Skip to main content
Log in

Studies on the antigenicity and nucleotide sequence of the rabies virus Nishigahara strain, a current seed strain used for dog vaccine production in Japan

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The Nishigahara strain of rabies virus, a current seed strain used for animal vaccine production in Japan, is believed to derive from the original Pasteur strain obtained from Paris in or before 1915. In Japan, the virus was serially passaged through several kinds of animals and cell cultures. Reactions with anti-nucleocapsid protein monoclonal antibodies (MAb-N) indicated the Nishigahara strain had maintained the antigenic profile of the Pasteur virus. Reactions with monoclonal antibodies to the glycoprotein (MAb-G) revealed differences between the Nishigahara strain and the Pasteur strain; however, the Nishigahara strain maintained a closer resemblance to the Pasteur virus than to other Pasteur-related viruses or to rabies strains unrelated to the Pasteur strain. Comparative amino acid sequence analysis of cloned cDNA encoding the G gene confirmed the antigenic differences among these strains and the resemblance of the Nishigahara strain to the original Pasteur strain. Comparative nucleotide sequence analysis of the noncoding pseudogene region (Tordo et al., Proc Natl Acad Sci USA83, 3914–3918, 1986) revealed different relationships. Unlike the Pasteur strain, which encodes a transcription-terminating signal at the end of the G gene (marking the beginning of the pseudogene), a long G-L intergenic sequence in the Nishigahara strain was connected to the 3′ end of the cDNA, and the transcription-terminating signal was present only at the end of, but not before, the pseudogene. These results are not inconsistent with the documented origin of the Nishigahara strain, but the genome structure around the pseudogene region suggests divergence from the Pasteur strain and a closer resemblance to other strains of rabies virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka G.,The Rabies (in Japanese). Tohodo-Shoten Publishing House, Tokyo, 1917, pp. 26–39.

    Google Scholar 

  2. Hiraiwa Y.,The Wolf: Its Ecology and History in Japan (in Japanese). Dobutsu-Bungaku-Kai (The Japanese Society for Animal Literature), Tokyo, 1981, pp. 108–117.

    Google Scholar 

  3. Noro G.,Treatments of Bites by Rabid Dog (in Japanese). Tohto-Shoshi Publishing House, Edo (Tokyo), 1736, p. 1.

    Google Scholar 

  4. Shimada K. in Nagano Y. and Davenport F.M. (eds.)Rabies. University of Tokyo Press, Tokyo, 1971, pp. 11–28.

    Google Scholar 

  5. Kondo A. Infect Inflamm Immun10 1–9, 1980 (in Japanese).

    Google Scholar 

  6. Takamatsu Y., Oshima Y., and Takehara K., NIBS Bull Biol ResIV 22–68, 1959 (in Japanese).

    Google Scholar 

  7. Ishikawa Y., Samejima T., Nunoya T., Motohashi T., and Nomura Y., J Jpn Vet Met Assoc42 637–643, 1989.

    Google Scholar 

  8. Smith J.S., Orciari L.A., Yager P.A., Seidel H.D., and Warner C.K., J Infect Dis166 296–307, 1992.

    Google Scholar 

  9. Tordo N., Poch O., Ermine A., Keith G., and Rougeon F., Proc Natl Acad Sci USA83 3914–3918, 1986.

    Google Scholar 

  10. Smith J.S., Adv Virus Res36 215–253, 1989.

    Google Scholar 

  11. Schneider L.G., Barnard B.J.H., and Schneider H.P. in Kuwert E., Merieux C., Koprowski H., Bogel K. (eds.)Rabies in the Tropics. Springer-Verlag, Berlin, 1985, pp. 47–59.

    Google Scholar 

  12. Wiktor T.J., Flamand A., and Koprowski H., J Virol Methods1 33–46, 1980.

    Google Scholar 

  13. Lafon M., Ideler J., and Wunner W.H., Dev Biol Stand57 219–225, 1984.

    Google Scholar 

  14. Gubler U., Hoffman B.J., Gene25 263–269, 1983.

    Google Scholar 

  15. Morimoto K., Ohkubo A., and Kawai A., Virology173 465–477, 1989.

    Google Scholar 

  16. Messing J. and Vieira J., Gene19 269–276, 1982.

    Google Scholar 

  17. Sanger F. and Coulson A.R., FEBS Lett87 107–110, 1978.

    Google Scholar 

  18. Sacramento D., Badrane H., Bourhy H., and Tordo N., J Gen Virol73 1149–1158, 1992.

    Google Scholar 

  19. Anilionis A., Wunner W.H., and Curtis P.J., Nature294 275–278, 1981.

    Google Scholar 

  20. Conzelman K.K., Cox J.H., Schneider L.G., and Thiel H., Virology175 485–499, 1990.

    Google Scholar 

  21. Benmansour A., Brahimi M., Tuffereau C., Coulson P., Lafay F., and Flamand A., Virology187 33–45, 1992.

    Google Scholar 

  22. Mannen K., Hiramatsu K., Mifune K., and Sakamoto S., Virus Genes5 69–73, 1991.

    Google Scholar 

  23. Ertl H.C.J., Dietzschold B., Gore M., Otvos L., Jr., Larson J.K., Wunner W.H., and Koprowski H., J Virol63 2885–2892, 1989.

    Google Scholar 

  24. Yelverton E., Norton S., Obijeski J.F., and Goeddel D.V., Science219 614–620, 1983.

    Google Scholar 

  25. Morimoto K., Kawai A., and Mifune K., J Gen Virol73 335–345, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, SI., Ide, T., Nakatake, H. et al. Studies on the antigenicity and nucleotide sequence of the rabies virus Nishigahara strain, a current seed strain used for dog vaccine production in Japan. Virus Genes 8, 35–46 (1994). https://doi.org/10.1007/BF01703600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703600

Key words

Navigation