Skip to main content
Log in

Rationale for the use of alendronate in osteoporosis

  • Review Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bisphosphonates are being used in disorders associated with accelerated resorption of bone, particularly Paget's disease of bone and the bone disease of malignancy. Their undoubted biological efficacy and relatively low apparent toxicity make them attractive candidates for the management of osteoporosis. The bisphosphonate alendronate has many characteristics which suggest that it is suitable for use in osteoporosis. It is a potent inhibitor of osteoclast-mediated bone resorption with no adverse effect on the mineralization of bone. Earlier studies have shown it to be one of the most active bisphosphonates in Paget's disease and the hypercalcemia of malignancy. In common with other bisphosphonates tested thus far, alendronate appears to inhibit bone loss in a variety of experimental models of osteoporosis. Long-term studies are needed to determine its steady-state effects on bone mass in man. Most data indicate that alendronate is capable at least of decreasing the rate of bone loss, and might even induce increments in bone mass for many years. Since the experimental studies show that the increase in bone mass observed with alendronate is associated with an increase in bone strength, its use is likely to decrease the frequency of fractures. However, direct clinical evidence for this requires the outcome of well-designed long-term prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleish H. Bisphosphonates. Drugs 1991;42:919–44.

    Google Scholar 

  2. Kanis JA. Pathophysiology and treatment of Paget's disease of bone. London: Martin Dunitz, 1991.

    Google Scholar 

  3. Russell RGG, Kanis JA. Tumour-induced hypercalcaemia and its management. Royal Society of Medicine International Congress and Symposium Series 176. London: RSM, 1991.

    Google Scholar 

  4. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OHN. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990;322:1265–71.

    Google Scholar 

  5. Watts NB, Harris ST, Genant HK, Wasnich R, Miller PD. Intermittent cyclical etidronate treatment in postmenopausal osteoporosis. N Engl J Med 1990;323:73–9.

    Google Scholar 

  6. Elomaa I, Blomqvist C, Porkka L. Lamberg-Allardt C, Borgstrom GH. Treatment of skeletal disease in breast cancer: a controlled clodronate trial. Bone 1987;8 (Suppl):53–6.

    Google Scholar 

  7. Paterson AHG, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S. Oral clodronate decreases skeletal morbidity in patients with bone metastases for breast cancer: double blind controlled trial. J Clin Oncol 1993;11/59–65.

    Google Scholar 

  8. Geddes Ad, D'Souza SM, Ebetino H, Ibbotson KL. Bisphosphonates: structure-activity relationships and therapeutic implications. Bone Miner Res Annu 1994;8:265–306.

    Google Scholar 

  9. Finerman GAM, Stover SL. Heterotopic ossification following hip replacement or spinal cord injury: two clinical studies with EHDP. Bone 1981;3:337–42.

    Google Scholar 

  10. Shinoda H, Adamek G, Felix R, Fleisch H, Schenk R, Hagan P. Structure-activity relationship of various bisphosphonates. Calcif Tissue Int 1983;35:87–99.

    Google Scholar 

  11. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, et al. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991;88:2095–105.

    Google Scholar 

  12. Schenk R, Eggli P, Felix H, Rosini S. Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 1986;38:342–9.

    Google Scholar 

  13. Muhlbauer RC, Russell RGG, Williams DA, Fleisch H. The effect of diphosphonates, polyphosphates, and calcitonin on immobilisation osteoporosis in rats. Eur J Clin Invest 1971;1:336–44.

    Google Scholar 

  14. Jee WSS, Black HE, Gotcher JE. Effect of dichloromethane diphosphonate on cortisol-induced bone loss in young adult rabbits. Clin Orthop 1981;156:39–51.

    Google Scholar 

  15. Wink CS, Onge MST, Parker B. The effects of dichloromethylene bisphosphonate on osteoporotic femora of adult castrate male rats. Acta Anat 1985;124:117–21.

    Google Scholar 

  16. Belena R, Markatos A, Gentile M, Masarachia P, Seedor JG, Rodan GA, Yamamoto M. The aminobisphosphonate alendronate inhibits bone loss induced by thyroid hormone in the rat: comparison between effects on tibiae and vertebrae. Bone 1993;14:499–504.

    Google Scholar 

  17. Toolan BG, Balena R, Shea M, Markatos A, Myers ER, Lee SC, et al. The effects of two year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry and bone strength in ovariectomized non-human primates. J Clin Invest 1993;92:2577–86.

    Google Scholar 

  18. Thompson DD, Seedor JG, Quartuccio H, Solomon H, Fioravanti C, Davidson J, et al. The bisphosphonate, alendronate, prevents bone loss in ovariectomized baboons. J Bone Miner Res 1992;7:951–60.

    Google Scholar 

  19. Thompson DD, Seedor JG, Weinreb M, Rosini S, Rodan GA. Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats. J Bone Miner Res 1990;5:279–86.

    Google Scholar 

  20. Galasko CSB, Samuel AW, Rushton S, Lacey E. The effect of prostaglandin synthesis inhibitors and diphosphonates on tumours-mediated osteolysis. Br J Surg 1980;67:493–6.

    Google Scholar 

  21. Martodam RR, Thornton KS, Sica DA, D'Souza SM, Flora L, et al. The effect of dichloromethylene diphosphonate on hypercalcemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif Tissue Int 1983;35:512–9.

    Google Scholar 

  22. Bassani D, Sabatini M, Scanziani E, De Francesco L, Coccioli G, et al. Bone invasion by Walker 256 Carcinoma, line A in young and adult rats: effects of etidronate. Oncology 1990;47:160–5.

    Google Scholar 

  23. Guaitani A, Sabatini M, Coccioli D, Cristina S, Garattini S, et al. An experimental rat model of local bone cancer invasion and its responsiveness to ethane-1-hydroxy-1,1-bis(phosphonate). Cancer REs 1985;45:2206–9.

    Google Scholar 

  24. Sietsema WK, Ebetino FH, Salvagno AM, Bevan JA. Antiresorptive dose-response relationship across three generations of bisphosphonates. Drugs Under Exp Clin Res 1989;15:389–96.

    Google Scholar 

  25. Muhlbauer RC, Stutzer A, Schenk R, Janner M, Fleisch H, Bosies E, et al. 1-hydroxy-3-(methylpentylamino) propylidene bisphosphonate (BM 21.0955), a potent new inhibitor of bone resorption. J Bone Miner Res 1991;6:1003–11.

    Google Scholar 

  26. Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective tissue cells in culture. Biochem J 1978;172:97–107.

    Google Scholar 

  27. Felix R, Guenther HL, Fleisch H. The subcellular distribution of14C-dichloromethylene bisphosphonate and14C-1-hydroxy-ethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int 1984;36:108–13.

    Google Scholar 

  28. Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest 1990;85:465–71.

    Google Scholar 

  29. Sato M, Grasser W. Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res 1990;5:31–40.

    Google Scholar 

  30. Flanagan AM, Chambers TJ. Dichloromethylenebisphosphonate (C12MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated bone. Bone Miner 1989;6:33–43.

    Google Scholar 

  31. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 1993;91:2004–11.

    Google Scholar 

  32. Hughes DE, MacDonald BR, Russell RGG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 1989;83:1930–5.

    Google Scholar 

  33. Boonekamp PM, van der Wee-Pals LJA, van Wij-van Lennep MLL, Thesing CW, Bijvoet OLM. Two modes of action of bisphosphonates on osteoclastic resorption of mineralised matrix. Bone Miner 1986;1:27–39.

    Google Scholar 

  34. Seedor JG, Quartuccio HA, Thompson DD. The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 1991;6:339–46.

    Google Scholar 

  35. Kline WF, Matuszewki BK. Improved determination of the bisphosphonate alendronate in human plasma and urine by automated precolumn derivatization and high-performance liquid chromatography with fluorescence and electrochemical detection. J Chromatography 1992;583:183–93.

    Google Scholar 

  36. Kline WF, Matuszewski BK, Bayne WF. Determination of 4-amino-1-hydroxybutane-1,1-bisphosphonic acid in urine by automated pre-column derivatization with 2,3-naphthalene dicarboxyaldehyde and high-performance liquid chromatography with fluorescence detection. J Chromatography 1990;534:139–49.

    Google Scholar 

  37. Kwong E, Chiu AMY, McClintock SA, Cotton ML. HPLC analysis of an amino bisphosphonate in pharmaceutical formulations using postcolumn derivatization and fluorescence detection. J Chromatography Sci 1990;28:563–8.

    Google Scholar 

  38. Lin JH, Duggan DE, Chen I-W, Ellsworth RL. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Metab Dispos 1991;19:926–32.

    Google Scholar 

  39. Chen I-W, Lin JH, Duggan DE. The physiological disposition of MK-217 (AHButBP), a new inhibitor of bone resorption. Fed Am Soc Exp Biol J 1989;3:A887.

    Google Scholar 

  40. Gertz BJ, Kline WF, Matuszewski BK, Sacco JF, Lasseter KC, Porras AG. Oral bioavailability and dose proportionality of alendronate (aminohydroxybutylidene bisphosphonate) in postmenopausal women. J Bone Miner Res 1991;6 (Suppl 1):S281.

    Google Scholar 

  41. Fogelman I, Smith L, Mazess R, Wilson MA, Bevan JA. Absorption of oral diphosphonate in normal subjects. Clin Endocrinol 1986;24:57–62.

    Google Scholar 

  42. Pentikainen PJ, Elomaa I, Nurmi AK, Karkkainen S. Pharmacokinetics of clodronate in patients with metastatic breast cancer. Am Soc Clin Pharmacol Ther 1986;39:218.

    Google Scholar 

  43. Wingen F, Schmahl D. Pharmacokinetics of the osteotropic diphosphonate 3-amino-1-hydroxypropane-1,1-diphosphonic acid in mammals. Arzheim Forsch Drug Res 1987;37:1037–42.

    Google Scholar 

  44. Lin JH, Chen IW, Deluna A, Hichens M. Renal handling of alendronate in rats. Drug Metab Dispos 1992;20:608–13.

    Google Scholar 

  45. Troehler U, Bonjour J-P, Fleisch H. Renal secretion of diphosphonates in rats. Kidney Int 1975;8:6–13.

    Google Scholar 

  46. O'Rourke NP, McCloskey EV, Neugebauer G, Kanis JA. Renal and non-renal clearance of clodronate in malignancy and renal impairment. Drug Invest 1994;7:26–33.

    Google Scholar 

  47. Lin JH, Chen I-W, Duggan DE. Effect of dose, sex and age on the disposition of alendronate, a potent antiosteolytic bisphosphonate, in rats. Drug Metab Dispos 1992;20:473–8.

    Google Scholar 

  48. Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD. A comparison of skeletal uptake of three diphosphonates by whole body retention. J Nucl Med 1981;22:880–3.

    Google Scholar 

  49. Powell JH, DeMark BR. Clinical pharmacokinetics of diphosphonates. In: Garattini S, editor. Bone resorption metastases and diphosphonates. New York: Raven Press, 1985:41–9.

    Google Scholar 

  50. Vasikaran SD, Gertz BJ, Sciberras DG, McCloskey EV, O'Rourke N, Kanis JA. Intravenous alendronate therapy in postmenopausal osteoporosis. Bone Miner 1992;17 (Suppl 1): S25.

  51. Harris ST, Gertz BJ, Eyre DR, Genant HK, Survill TT, Chestnut CH. The effect of short-term treatment with alendronate upon vertebral density and biochemical markers of bone remodeling in early postmenopausal women. J Clin Endocrinol Metab 1993;76:1399–406.

    Google Scholar 

  52. O'Doherty DP, Bickerstaff DR, McCloskey EV, Hamdy NAT, Benéton MNC, Harris S, et al. Treatment of Paget's disease of bone with aminohydroxybutylidene bisphosphonate. J Bone Miner Res 1990;5:483–91.

    Google Scholar 

  53. O'Doherty DP, Gertz BJ, Tindale W, Sciberras DG, Survill TT, Kanis JA. Effects of five daily 1h infusions of alendronate in Paget's disease of bone. J Bone Miner Res 1992;7:81–7.

    Google Scholar 

  54. Bickerstaff DR, O'Doherty DP, McCloskey EV, Hamdy NAT, Mian M, Kanis JA. Effects of amino-butylidene diphosphonate in hypercalcemia due to malignancy. Bone 1991;12:17–20.

    Google Scholar 

  55. Zysset E, Ammann P, Jenzer A, Gertz BJ, Portmann L, Rizzoli R, et al. Comparison of a rapid (2-h) versus a slow (24-h) infusion of alendronate in the treatment of hypercalcemia of malignancy. Bone Miner 1992;18:237–49.

    Google Scholar 

  56. Parfitt AM. The physiologic and clinical significance of bone histomorphometric data. In: Recker R, editor. Bone histomorphometry techniques. Boca Raton: CRC Press, 1983:143–223.

    Google Scholar 

  57. Flora L, Massing GS, Parfitt AM, Villanueva AR. Comparative skeletal effects of two diphosphonates in dogs. Metab Bone Dis Rel Res 1980;2:389–407.

    Google Scholar 

  58. Adami S, Bolzicco GP, Rizzo A, Salvagno G, Bertoldo F, Rossini M, et al. The use of dichloromethylene bisphosphonate and aminobutane bisphosphonate in hypercalcemia of malignancy. Bone Miner 1987;2:395–404.

    Google Scholar 

  59. Nussbaum SR, Warrell RP, Rude R, Glusman J, Bilezikian JP, Stewart AF, et al. A dose response study of alendronate sodium for the treatment of cancer-associated hypercalcemia. J Clin Oncol 1993;11:1618–23.

    Google Scholar 

  60. Rizzoli R, Buchs B, Bonjour J-P. Effect of a single infusion of alendronate in malignant hypercalcaemia: dose dependency and comparison with clodronate. Int J Cancer 1992;51:1–7.

    Google Scholar 

  61. Kanis JA, McCloskey EV, Paterson AHG. Use of diphosphonates in hypercalcaemia due to malignancy. Lancet 1990;335:170–1.

    Google Scholar 

  62. Attardo-Parrinello G, Merlini G, Pavesi F, Crema F, Fiorentini ML, Ascari E. Effects of a new aminodiphosphonate (aminohydroxybutylidene disphosphonate) in patients with osteolytic lesions from metastases and myelomatosis: comparison with dichloromethylene diphosphonate. Arch Intern Med 1987;147:1629–33.

    Google Scholar 

  63. Nemoto R, Sato S, Nishijima Y, Miyakawa I, Koiso K, Harada M. Effects of a new bisphosphonate (AHButBP) on osteolysis induced by human prostate cancer cells in nude mice. J Urol 1990;144:770–4.

    Google Scholar 

  64. Kanis JA, Gray RES. Long-term follow-up observations on treatment in Paget's disease of bone. Clin Orthop 1987;217:99–125.

    Google Scholar 

  65. Adami S, Salvagno G, Guarrera G, Montesanti F, Garavelli S, Rosini S, Lo Cascio V. Treatment of Paget's disease of bone with intravenous 4-amino-1-hydroxybutylidene-1,1-bisphosphonate. Calcif Tissue Int 1986;39:226–9.

    Google Scholar 

  66. Palummeri E, Pedrazzon M, Ciotti G, Barbagallo M, Pioli G, Dacco L, et al. Aminobutane bisphosphonate in the treatment of Paget's disease of bone effects on bone and mineral metabolism: observations at six months of therapy. Terapia Moderna 1990;4:26–32.

    Google Scholar 

  67. Pedrazonni M, Palummeri E, Ciotti G, Davoli L, Pioli G, Girasole G, Passeri M. Short-term effects on bone and mineral metabolism of 4-amino-1-hydroxybutylidene-1, 1-diphosphonate (ABDP) in Paget's disease of bone. Bone Miner 1989;7:301–7.

    Google Scholar 

  68. O'Doherty DP, Bickerstaff DR, McCloskey EV, Eyres KS, Kanis JA. Radiographic healing of osteolytic Paget's disease of the tibia with alendronate. J Orthop Rheumatol 1991;4:153–7.

    Google Scholar 

  69. McCloskey EV, Yates AJP, Beneton MNC, Galloway J, Harris S, Kanis JA. Comparative effects of intravenous diphosphonates on calcium and skeletal metabolism in man. Bone 1987;8 (Suppl):35–41.

    Google Scholar 

  70. Lawson-Matthew PJ, Guilland-Cumming DF, Yates AJP, Russell RGG, Kanis JA. Contrasting effects of high and low doses of etidronate on vitamin D metabolism in man. Clin Sci 1988;74:101–6.

    Google Scholar 

  71. McCloskey EV, Yates AJP, Gray RES, Hamdy NAT, Galloway J, Kanis JA. Diphosphonates and phosphate homeostasis. Clin Sci 1988;74:607–12.

    Google Scholar 

  72. Burssens A, Gertz BJ, Francis RM, Tucci JR, Singer FR. A double-blind, placebo-controlled, rising multiple dose trial of oral alendronate in Paget's disease. J Bone Miner Res 1992;5 (Suppl 2):239.

    Google Scholar 

  73. Valkema RF, Vismans JFE, Papapoulos SE, Pauwels EKJ, Bijvoet OLM. Maintained improvement in calcium balance and bone mineral content in patients with osteoporosis treated with the bisphosphonate APD. Bone Miner 1989;5:183–92.

    Google Scholar 

  74. Yamamoto M, Merkatos A, Seedor JG, Masarachia P, Gentile M, Rodan R, Balena R. The effects of the aminobisphosphonate alendronate on thyroid hormone-induced osteopenia in rats. Calcif Tissue Int 1993;53:278–82.

    Google Scholar 

  75. Toolan BC, Shea M, Myers ER, Borchers RE, Seedor JG, Quartuccio H, et al. Effects of 4-amino-1-hydroxybutylidene bisphosphonate on bone biomechanics in rats. J Bone Miner Res 1992;7:1399–406.

    Google Scholar 

  76. Lauritzen DB, Balena R, Shea M, Seedor JG, Markatos A, Le HM, et al. Effects of combined prostaglandin and alendronate treatment on the histomorphometry and biochemical properties of bone in ovariectomized rats. J Bone Miner Res 1993;8:871–9.

    Google Scholar 

  77. Passeri M, Baroni MC, Pedrazzoni G, Pioli M, Barbagallo M, Costi D, et al. Intermittent treatment with intravenous 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (AHButBP) in the therapy of postmenopausal osteoporosis. Bone Miner 1991;15:237–48.

    Google Scholar 

  78. Adami S, Broggini M, Caruso I, Gnessi L, Norbiato G, Ortolani S, et al. Treatment of postmenopausal osteoporosis with continuous daily oral alendronate in comparison to either placebo or intranasal salmon calcitonin. Osteoporosis Int 1993;Suppl 3:S21–8.

    Google Scholar 

  79. McClung MR, Yates AJ. Alendronate prevents or reverses bone loss at the spine and hip in recently menopausal women. J Bone Miner Res 1993;8 (Suppl 1):143.

    Google Scholar 

  80. Lufkin EG, Wahner HW, O'Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann on Intern Med 1992;117:1–9.

    Google Scholar 

  81. Gertz BJ, Shao P, Hanson DA, Quan H, Harris ST, Genant HK, et al. Monitoring bone resorption in early postmenopausal women by an immunoassay for cross-linked collagen peptides in urine. J Bone Miner Res 1994;9:135–42.

    Google Scholar 

  82. Kanis JA. The restoration of skeletal mass: a theoretic overview. Am J Med 1991;91(5B):29–36.

    Google Scholar 

  83. Kanis JA, Geusens P, Christiansen C. Guidelines for clinical trials in osteoporosis. Osteoporosis Int 1991;1:182–8.

    Google Scholar 

  84. Devogelaer JP, Nagant de Deuxchaisnes C. Treatment of involutional osteoporosis with the bisphosphonate APD (disodium pamidronate): nonlinear increase of lumbar bone mineral density. J Bone Miner Res 1990;5 (Suppl 12):S251.

    Google Scholar 

  85. Boyce RW, Eriksen EF, Franks AF, Stokes CL, Jankowsky ML. Effect of NE-58095 on trabecular bone modelling: 3-D reconstruction of the remodelling site. J Bone Miner Res 1989; 4 (Suppl):S277.

    Google Scholar 

  86. McCloskey EV, Beneton MNC, O'Rourke N, Eyres K, O'Doherty D, Kanis JA. The effect of phosphate and intermittent clodronate in post-menopausal osteoporosis. In: Christiansen C, Overgaard K, editors. Osteoporosis 1990. Copenhagen: Osteopress ApS:1401-2.

  87. Steiniche T, Hasling C, Charles P, Eriksen EF, Melsen F, Mosekilde L. The effects of etidronate on trabecular bone remodeling in postmenopausal spinal osteoporosis: a randomized study comparing intermittent treatment with an ADFR regimen. Bone 1991;12:155–63.

    Google Scholar 

  88. Hodsman AB. Effects of cyclical therapy for osteoporosis using an oral regimen of inorganic phosphate and sodium etidronate: a clinical and bone histomorphometric study. Bone Miner 1989;5:201–12.

    Google Scholar 

  89. Bruickman PM, Biggermann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine 1989;14:606–10.

    Google Scholar 

  90. Kanis JA. What constitutes efficacy in studies of osteoporosis? Drugs Aging 1993;3:391–9.

    Google Scholar 

  91. Fitton A, McTavish D. Pamidronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 1991;41:289–318.

    Google Scholar 

  92. Kanis JA, Preston CJ, Yates AJP, Percival RC, Mundy KI, Russell RGG. Effects of intravenous diphosphonates on renal function. Lancet 1983;1:1328.

    Google Scholar 

  93. Adami S, Bhalla AK, Dorizzi R, Montesanti F, Rosini S, Salvagno G, Lo Cascio V. The acute-phase response after bisphosphonate administration. Calif Tissue Int 1987;41:326–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanis, J.A., Gertz, B.J., Singer, F. et al. Rationale for the use of alendronate in osteoporosis. Osteoporosis Int 5, 1–13 (1995). https://doi.org/10.1007/BF01623652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01623652

Keywords

Navigation