Skip to main content
Log in

Simultaneous determination of nicotine and cotinine in various human tissues using capillary gas chromatography/mass spectrometry

  • Original articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

A reliable and sensitive method for the simultaneous determination of nicotine and cotinine concentrations in various human tissues was developed using capillary gas chromatography/mass spectrometry. Nicotine and cotinine were extracted using a 3-step solvent extraction procedure and quinoline as an internal standard. Quantification was carried out by single ion monitoring using ions of m/z 133 for nicotine, m/z 176 for cotinine and m/z 129 for quinoline. The lower limit of detection was 5 ng/g for nicotine and 10 ng/g for cotinine, in each tissue sample. The calibration curves of various tissues were linear in the concentration range from 5–1,200 ng/g for nicotine and 10–1,500 ng/g for cotinine. The accuracy and precision of this method were examined using human tissues and the results were satisfactory. The distribution of nicotine and cotinine was measured in tissues from 10 human autopsies. Nicotine was detected in every tissue examined at a level seen in habitual smokers. The nicotine concentration was high in the liver, kidney, spleen and lung, and low in adipose tissue. The cotinine level was highest in the liver. The tissue/blood concentration ratios of nicotine and cotinine were most stable in skeletal muscle, where the level of these drugs was close to that in whole blood. Skeletal muscle is, therefore, considered to be the most suitable tissue sample for toxicological examination, when acquisition of blood samples is not feasible.

Zusammenfassung

Zur gleichzeitigen Bestimmung von Nikotin und Cotinin in verschiedenen Körpergeweben wurde eine zuverlässige und sensitive Methode mittels der Kapillar-Gas-Chromatographie/Massenspektrometrie entwickelt. Nikotin und Cotinin wurden durch einen 3-stufigen Extraktionsvorgang mit Chinolin als internem Standard isoliert und die Quantifizierung mittels der single ion monitoring-Technik durchgeführt, wobei für Nikotin das Ion m/z 133, für Cotinin m/z 176 und für Chinolin m/z 129 verwendet wurde. Die Detektionsgrenze lag in allen Geweben für Nikotin bei 5 ng/g und für Cotinin bei 10 ng/g, die Kalibrierung erbrachte lineare Verhältnisse im Bereich von 5–1.200 ng/g für Nikotin und im Bereich von 10–1.500 ng/g für Cotinin. Die Genauigkeit und Präzision der Methode wurde an verschiedenen Körpergeweben ausreichend bewiesen. Die Verteilung der beiden Verbindungen in verschiedenen Geweben wurde in 10 Fällen bestimmt. Die festgestellten Nikotinspiegel lagen hierbei bei Konzentrationen, die bei üblichen Tabakrauchern gemessen werden. Hohe Nikotinspiegel wurden in Leber, Niere, Milz und Lunge, niedrige Konzentrationen im Fettgewebe festgestellt. Die Cotinin-Konzentration lag in der Leber am höchsten. Das Gewebe-Blut-Verteilungsverhältnis für Nikotin und Cotinin war im Skelettmuskelgewebe am konstantesten, wobei die Konzentrationen hier jeweils nahe an den Konzentrationen im Blut lagen. Der Skelettmuskel ist somit das geeignetste Gewebe für toxikologische Untersuchungen, wenn die Asservierung von Blut nicht möglich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Degen PH, Schneider W (1991) Rapid and sensitive determination of low concentrations of nicotine in plasma by gas chromatography with nitrogen — specific detection. J Chromatogr563:193–198

    PubMed  Google Scholar 

  2. Feyerabend C, Russel MAH (1990) A rapid gas-liquid chromatographic method for the determination of cotinine and nicotine in biological fluids. J Pharm Pharmacol 42:450–452

    PubMed  Google Scholar 

  3. Dahlstrom A, Lundell B, Curvall M, Thapper L (1990) Nicotine and cotinine concentration in the nursing mother and her infant. Acta Paediatr Scand 79:142–147

    PubMed  Google Scholar 

  4. Voncken P, Scheper G, Schafer KH (1989) Capillary gas chromatographic determination of trans-3′-hydroxycotinine simultaneously with nicotine and cotinine in urine and blood samples. J Chromatogr 479:410–418

    PubMed  Google Scholar 

  5. Davis RA (1986) The determination of nicotine and cotinine in plasma. J Chromatogr Sci 24:134–141

    PubMed  Google Scholar 

  6. Curvall M, Kazami-Vala M, Enzell CR (1982) Simultaneous determination of nicotine and cotinine in plasma using capillary column gas chromatography with nitrogen-sensitive detection. J Chromatogr 232:283–293

    PubMed  Google Scholar 

  7. Feyerabend C, Russel MA (1980) Assay of nicotine in biological materials: source of contamination and their elimination. J Pharm Pharmacol 32:178–181

    PubMed  Google Scholar 

  8. Chaturvedi AK, Rao NGS, McCoy FE (1983) A multi-chemical death involving caffeine, nicotine and malathion. Forensic Sci Int 23:265–275

    PubMed  Google Scholar 

  9. Deutsch J, Hegedus L, Greig LH, Rapoport SI, Soncrant TT (1992) Electron-impact and chemical ionization detection of nicotine and cotinine by gas chromatography-mass spectrometry in rat plasma and brain. J Chromatogr 579:93–98

    PubMed  Google Scholar 

  10. Thompson JA, Ho MS, Petersen DR (1982) Analyses of nicotine and cotinine in tissues by capillary gas chromatography — mass spectrometry. J Chromatogr 231:53–63

    PubMed  Google Scholar 

  11. Kintz P, Ludes B, Mangin P (1992) Evaluation of nicotine and cotinine in human hair. J Forensic Sci 37:72–76

    PubMed  Google Scholar 

  12. Chowdhury P, Doi R, Chang LW, Rayford PL (1993) Tissue distribution of [3H]-nicotine in rats. Biomed Environ Sci 6:59–64

    PubMed  Google Scholar 

  13. Rowell PP, Hurst HE, Marlowe C, Bennett BD (1983) Oral administration of nicotine: its uptake and distribution after chronic administration to mice. J Pharmacol Methods 9:249–261

    PubMed  Google Scholar 

  14. Tsujimoto A, Nakashima T, Tanino S, Dohi T, Kurogochi Y (1975) Tissue distribution of [3H]nicotine in dogs and rhesus monkeys. Toxicol Appl Pharmacol 32:21–31

    PubMed  Google Scholar 

  15. Yamamoto I, Inoki R, Iwatsubo K (1968) Penetration of nicotine14C into several rat tissue in vivo and in vitro. Toxicol Appl Pharmacol 12:560–567

    Google Scholar 

  16. Grusz-Harday E (1967) Fatal nicotine poisoning. Arch Toxicol 23:35–41

    Google Scholar 

  17. Moffat AC (1986) Clarke's isolation and identification of drugs — in pharmaceuticals, body fluids, and post-mortem material, 2nd edn. The Pharmaceutical Press, London, pp 807–808

    Google Scholar 

  18. Domino EF, Hornbach E, Demana T (1993) The nicotine content of common vegetables. N Engl J Med 329:437

    PubMed  Google Scholar 

  19. Nagata T, Kimura K, Hara K, Kudo K (1990) Methamphetamine and amphetamine concentrations in postmortem rabbit tissues. Forensic Sci Int 48:39–47

    PubMed  Google Scholar 

  20. Kimura K, Nagata T, Kato K, Kudo K, Imamura T (1991) Postmortem changes of ingested thinner components in tissues. Jpn J Leg Med 45:222–226

    Google Scholar 

  21. Kudo K, Nagata T, Kimura K, Imamura T, Urakawa N (1991) Postmortem changes of triazolam concentrations in body tissues. Jpn J Leg Med 45:293–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urakawa, N., Nagata, T., Kudo, K. et al. Simultaneous determination of nicotine and cotinine in various human tissues using capillary gas chromatography/mass spectrometry. Int J Leg Med 106, 232–236 (1994). https://doi.org/10.1007/BF01225411

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225411

Key words

Schlüsselwörter

Navigation