Skip to main content
Log in

Cytological investigations on the cerebellar cortex of sudden infant death victims

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The study was based on the hypothesis that cerebellar hypoxia may play a role in sudden infant death syndrome resulting in morphological changes of the cerebellar cortex, especially with respect to Purkinje cell density. In the morphological evaluation of the Purkinje cell layer, special consideration was additionally given to secondary alterations (i.e., macrophage and/or astrocyte reaction). A total of 12 sudden infant death syndrome cases were compared with an age- and sex-matched control group. The Purkinje cell density was evaluated by determining the number of these cells per suface unit on parasagittal sections in both hemispheres. The myelomonocytic and glial reaction was demonstrated by immunohistochemical methods using lysozyme as leukocyte and macrophage markers and glial fibrillary acidic protein as an astrocyte marker. Qualitatively, no alterations resembling a macrophage or glial cell reaction were detected in sudden infant death syndrome. No differences between the right and left cerebellar hemisphere could be established in the victims of sudden infant death syndrome nor in the controls. The number of Purkinje cells per 0.352 mm2 cortex was higher in the younger victims of sudden infant death (younger than 45 weeks of gestation) than in all matched controls. A statistically significant difference in Purkinje cell density, however, could not be established, and, especially, no indications of hypoxia were observed in the cerebellar cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarelli B, Meade P, Müller J (1980) Hypoxic lesions in areas of primary myelination. A distinct pattern in cerebral palsy. Child's Brain 7:132–145

    Google Scholar 

  2. Becker LE (1983) Neuropathological basis for respiratory dysfunction in sudden infant death syndrome. In: Sudden infant death syndrome. Tildon JT, Roeder LM, Steinschneider A (eds), Academic Press, New York, pp 99–114

    Google Scholar 

  3. Duvernoy H, Delon S, Vannson JL (1983) The vascularization of the human cerebellar cortex. Brain Res Bull 11:419–480

    Google Scholar 

  4. Emery JL (1979) The central nervous system and cot deaths. Dev. Med Child Neurol 21:239–242

    Google Scholar 

  5. Eng LF (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8:203–214

    Google Scholar 

  6. Eng LF, De Armond SJ (1983) Immunochemistry of the glial fibrillary acidic protein. Prog Neuropathol 5:19–39

    Google Scholar 

  7. Gerhardt L (1962) Zur Morphologie der perinatalen Hypoxie. In: Klinke K (ed) Probleme der ersten Lebenstage, Schattauer Verlag. Stuttgart, pp 12–26

    Google Scholar 

  8. Gillilan LA (1969) The arterial and venous blood supplies to the cerebellum of primates. J Neuropathol Exp Neurol 28:295–307

    Google Scholar 

  9. Kinney HC, Burger PC, Harrell FE, Jr (1983) “Reactive gliosis” in the medulla oblongata of victims of the sudden infant death syndrome. Pediatrics 72:181–187

    Google Scholar 

  10. Kirchmeier P (1978) Hirnentwicklungsstörungen bei intrauteriner entwicklungsabweichung. Präliminäre Studie zur Frage der Entwicklungsbeeinträchtigung der Großhirn- und Kleinhirnrinde in Abhängigkeit von Reifungsstörungen, Hypoplasie und Durchblutungsstörungen der Planzenta bei 51 perinatalen Todesfällen. Berlin: Inaug Dis

    Google Scholar 

  11. Kloos K (1965) Neue pathologisch-anatomische Befunde bei der primären Asphyxie und dem respiratory-distress-syndrome. In: Ewerbeck, H., Friedberg V (eds) Die Übergangsstörungen des Neugeborenen und die Bekämpfung der perinatalen Mortalität. Thieme, Stuttgart, p 89–96

    Google Scholar 

  12. Kloos K, Vogel M (1974) Pathologie der Perinatalperiode. Thieme, Stuttgart

    Google Scholar 

  13. Meessen H, Stochdorph O (1952) Gehirnbefunde bei Morbus coeruleus. Proc 1st Intern Congr Neuropath, Roma. Rosenberg & Sellier, Torino, pp 459–477

    Google Scholar 

  14. Molz G, Hartmann H (1984) Dysmorphism, dysplasia, and anomaly in sudden infant death. N Engl J Med 311:259

    Google Scholar 

  15. Motoi M, Stein H, Lennert K (1980) Demonstration of lysozyme, a1-antichymotrypsin, a1-antitrypsin, albumin, and transferrin with the immunoperoxidase method in lymph node cells. Virchows Arch [B] 35:73–82

    Google Scholar 

  16. Naeye RL (1974) Hypoxemia and the sudden infant death syndrome. Science 186:837–838

    Google Scholar 

  17. Naeye RL (1976) Brain stem and adrenal abonomalities in the sudden-infant-death syndrome. Am J Clin Pathol 66:526–530

    Google Scholar 

  18. Nakamura Y, Nakashima T, Fukuda S, Nakashima H, Hashimoto T (1986) Hypoxic-ischemic brain lesions found in asphyxiating neonates. Acta Pathol Jpn 36:551–563

    Google Scholar 

  19. Nyka WM (1976) Cerebral lesions of mature newborn due to perinatal hypoxia. II. Mothers diseases. Z. Geburtsh Perinat 180:295–299

    Google Scholar 

  20. Oehmichen M (1989) Hirnveränderungen beim plötzlichen Kindstod; eine kritische Übersicht. In Andler W, Trowitsch E, Schläfke ME (eds) Der plötzliche Kindstod. Acron, Berlin New York (in press)

    Google Scholar 

  21. Oehmichen M, Linke P, Zilles K, Saternus KS (1989) Reaction of astrocytes and macrophages in the brain stem of SIDS victims? Clin Neuropathol (in press)

  22. Osserman EF, Lawlor DP (1966) Serum and urinary lysoyzme (muramidase) in monocytic and monomyelocytic leukemia. J Exp Med 124:921–955

    Google Scholar 

  23. Quattrochi JJ, McBride PT, Yates AJ (1985) Brain stem immaturity in sudden infant death syndrome: a quantitative rapid Golgi study of dendritic spines in 95 infants. Brain Res 325:39–48

    Google Scholar 

  24. Roessmann U, Gambetti P (1986) Pathological reaction of astrocytes in perinatal brain injury. Acta Neuropathol (Berl) 70:302–307

    Google Scholar 

  25. Roessmann U, Gambetti P (1986) Astrocytes in the developing human brain. Acta Neuropathol (Berl) 70:308–313

    Google Scholar 

  26. Saternus KS, Adam G (1985) Der plötzliche Kindstod. Postmortale Flußmessugnen an den großen Halsgefäßen zum Nachweis der lageabhängigen zerebralen Hypoxämie. Dtsch Med Wochenschr 110:297–303

    Google Scholar 

  27. Schneck SA, Neuburger KT (1962) Lesions of the brain in hyaline membrane disease of infants. Acta Neuropathol (Berl) 2:11–23

    Google Scholar 

  28. Steinschneider A (1972) Prolonged apnoe and the sudden infant death syndrome: clinical and laboratory observations. Pediatrics 50:646–654

    Google Scholar 

  29. Sternberger LA (1979) Immunocytochemistry. Wiley & Sons, New York Chichester Brisbane Toronto

    Google Scholar 

  30. Takashima S, Armstrong D, Becker L, Bryan C (1978) Cerebral hypoperfusion in the sudden infant death syndrome? Brain stem gliosis and vasculature. Ann Neurol 4:257–262

    Google Scholar 

  31. Takashima S, Armstrong D, Becker LE, Huber J (1978) Cerebral white matter lesions in sudden infant death syndrome. Pediatrics 62:155–159

    Google Scholar 

  32. Takashima S, Mito T, Becker LE (1985) Neuronal development in the medullary reticular formation in sudden infant death syndrome and premature infants. Neuropediatrics 16:76–79

    Google Scholar 

  33. Taylor CR, Kledzik G (1981) Immunohistologic techniques in surgical pathology — A spectrum of “new” special stains. Hum Pathol 12:590–596

    Google Scholar 

  34. Uchimura Y (1929) Über die Blutversorgung der Kleinhirnrinde und ihre Bedeutung für die Pathologie des Kleinhirns. Z Gesamte Neurol Psychiatr 120:774–783

    Google Scholar 

  35. Valdes-Dapena M (1986) Sudden infant death syndrome. Morphology update for forensic pathologists — 1985. Forensic Sci Int 30:177–186

    Google Scholar 

  36. Van Beek JHGM, Berkenbosch A, DeGoese J, Olievier CN (1984) Effects of brain stem hypoxemia on the regulation of breathing. Respir Physiol 57:171–188

    Google Scholar 

  37. Vawter GF, Kosakewich H (1983) Aspects of morphologic variations amongst SIDS victims. In: Tildon JT, Roeder LM, Steinschneider A (eds) Sudden infant death syndrome. Academic Press, New York, pp 133–144

    Google Scholar 

  38. Veith G (1966) Probleme des frühkindlichen Hirnschadens aus der Sicht des Morphologen. In: Elert R, Hüter KA (eds) Die Prophylaxe frühkindlicher Hirnschäden. Thieme, Stuttgart, pp 4–15

    Google Scholar 

  39. Viehweg B (1972) Pulmonale hyaline Membranen und Kleinhirnveränderungen bei Neugeborenen. Zentralbl Allg Pathol 116:538–542

    Google Scholar 

  40. Wilske J (1984) Der plötzliche Säuglingstod (SIDS). Morphologische Abgrenzung, Pathomechanismus und Folgerungen für die Praxis. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oehmichen, M., Wullen, B., Zilles, K. et al. Cytological investigations on the cerebellar cortex of sudden infant death victims. Acta Neuropathol 78, 404–409 (1989). https://doi.org/10.1007/BF00688177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688177

Key words

Navigation