Skip to main content
Log in

EGF receptor expression, regulation, and function in breast cancer

  • Guest editor's introduction
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Epidermal growth factor receptor (EGFR) overexpression correlates with both loss of estrogen receptor (ER) and poor prognosis in breast cancer. Interestingly, in normal breast EGFR appears to be expressed more frequently than in malignant tissue, and there may be a different relationship between ER and EGFR. A variety of cellular regulators, such as EGF, TGFα, phorbol esters, and steroid hormones, are capable of altering the level of EGFR expression in breast cells. However, much work remains to be done on the mechanistic details of EGFR regulation in this disease. The significance of EGFR as an oncogene in breast cancer is compounded by its potential interactions with other oncogenes such as c-erbB-2 and c-myc. Additionally, several recent studies have placed EGFR prominently in the signal transduction pathway, demonstrating that the EGFR-ligand system may play important roles throughout the course of malignant progression in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fitzpatrick SL, Brightwell J, Wittliff J, Barrows GH, Schultz GS: Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen and progestin receptor levels. Cancer Res 44:3448–3453, 1984.

    Google Scholar 

  2. Sainsbury JRC, Farndon JR, Sherbet GV, Harris AL: Epidermal growth factor receptors and oestrogen receptors in human breast cancers. Lancet i:364–366, 1985.

    Google Scholar 

  3. Nicholson S, Halcrow P, Sainsbury JRC, Angus B, Chambers P, Farndon JR, Harris AL: Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer 58:810–814, 1988.

    Google Scholar 

  4. Davidson NE, Gelmann EP, Lippman ME, Dickson RB: Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1:216–223, 1987.

    Google Scholar 

  5. Koenders PG, Beex LVAM, Geurts-Moespot A, Heuvel JJTM, Kienhuis CBM, Benraad TJ: Epidermal growth factor receptor-negative tumors are predominantly confined to the subgroup of estradiol receptorpositive human primary breast cancers. Cancer Res 51:4544–4548, 1991.

    Google Scholar 

  6. Dittadi R, Donisi PM, Brazzale A, Cappellozza L, Bruscagnin G, Gion M: Epidermal growth factor receptor in breast cancer. Comparison with non-malignant breast tissue. Br J Cancer 67:7–9, 1993.

    Google Scholar 

  7. Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone-independent tumor growth in vivo. Mol Endocrinol 2: 886–892, 1988.

    Google Scholar 

  8. Sharma AK, Horgan K, Douglas-Jones AG, McClelland RA, Nicholson RI: Double immunocytochemical assay of receptors for oestrogen (ER) and epidermal growth factor (EGFR). Breast Cancer Res Treat 23:185, 1992.

    Google Scholar 

  9. Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet JC, Powles TJ, Coombes RC: Growth factor expression in normal, benign, and malignant breast tissue. Br Med J 296:1621–1624, 1988.

    Google Scholar 

  10. Tauchi K, Hori S, Itoh H, Osamura RY, Tokuda Y, Tajima T: Immunohistochemical studies on oncogene products (c-erbB-2, EGFR, c-myc) and estrogen receptor in benign and malignant breast lesions. With special reference to their prognostic significance in carcinoma. Virchows Archiv A Pathol Anat 416:65–73, 1989.

    Google Scholar 

  11. Koenders P, Beex L, Kienhuis C, Kloppenborg P, Benraad T: Epidermal growth factor receptor and prognosis in human breast cancer: a prospective study. Breast Cancer Res Treat 23:134, 1992.

    Google Scholar 

  12. Ozawa S, Ueda M, Ando N, Abe O, Shimizu N: Epidermal growth factor receptors in cancer tissues of esophagus, lung, pancreas, colorectum, breast and stomach. Jpn J Cancer Res 79:1201–1207, 1988.

    Google Scholar 

  13. Moller P, Mechtersheimer G, Kaufmann M, Moldenhauer G, Momburg F, Mattfeldt T, Otto HF: Expression of epidermal growth factor receptor in benign and malignant primary tumours of the breast. Virchows Arch A Pathol Anat 414:157–164, 1989.

    Google Scholar 

  14. Barker S, Panahy C, Puddefoot JR, Goode AW, Vinson GP: Epidermal growth factor receptor and oestrogen receptors in the non-malignant part of the cancerous breast. Br J Cancer 60:673–677, 1989.

    Google Scholar 

  15. Damjanov I, Mildner B, Knowles BB: Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest 55:588–592, 1986.

    Google Scholar 

  16. Tsutsumi Y, Naber SP, DeLellis RA, Wolfe HJ, Marks PJ, McKenzie SJ, Yin S: neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol 21:750–758, 1990.

    Google Scholar 

  17. Berthon P, Pancino G, de Cremoux P, Roseto A, Gespach C, Calvo F: Characterization of normal breast epithelial cells in primary cultures: differentiation and growth factor receptors studies. In Vitro Cell Dev Biol 28A:716–724, 1992.

    Google Scholar 

  18. Gullick WJ: Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. British Med Bulletin 47:87–98, 1991.

    Google Scholar 

  19. Xu YH, Richert N, Ito S, Merlino GT, Pastan I: Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci USA 81:7308–7312, 1984.

    Google Scholar 

  20. King CR, Kraus MH, Williams LT, Merlino GT, Pastan IH, Aaronson SA: Human tumor cell lines with EGF receptor gene amplification in the absence of aberrant sized mRNAs. Nucl Acids Res 13:8477–8486, 1985.

    Google Scholar 

  21. Haley J, Whittle N, Bennett P, Kinchington D, Ullrich A, Waterfield M: The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res 1:375–396, 1987.

    Google Scholar 

  22. Kudlow JE, Cheung C-YM, Bjorge JD: Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J Biol Chem 261:4134–4138, 1986.

    Google Scholar 

  23. Bjorge JD, Kudlow JE: Epidermal growth factor receptor synthesis is stimulated by phorbol ester and epidermal growth factor. J Biol Chem 262:6615–6622, 1987.

    Google Scholar 

  24. Clark AJL, Ishii S, Richert N, Merlino GT, Pastan I: Epidermal growth factor regulates the expression of its own receptor. Proc Natl Acad Sci USA 82:8374–8378, 1985.

    Google Scholar 

  25. Fernandez-Pol JA, Hamilton PD, Klos DJ: Transcriptional regulation of proto-oncogene expression by epidermal growth factor, transforming growth factor β1, and triiodothyronine in MDA-468 cells. J Biol Chem 264:4151–4156, 1989.

    Google Scholar 

  26. Fernandez-Pol JA, Klos DJ, Hamilton PD: Modulation of transforming growth factor alpha-dependent expression of epidermal growth factor receptor gene by transforming growth factor beta, triiodothyronine, and retinoic acid. J Cell Biochem 41:159–170, 1989.

    Google Scholar 

  27. Saceda M, Knabbe C, Dickson RB, Lippman ME, Bronzert D, Lindsey RK, Gottardis MM, Martin MB: Post-transcriptional destablization of estrogen receptor mRNA in MCF-7 cells by TPA. J Biol Chem 266:17809–17814, 1991.

    Google Scholar 

  28. Lee CSL, Koga M, Sutherland RL: Modulation of estrogen receptor and epidermal growth factor receptor mRNAs by phorbol ester in MCF-7 breast cancer cells. Biochem Biophys Res Commun 162:415–421, 1989.

    Google Scholar 

  29. deFazio A, Chiew Y-E, Donoghue C, Lee CSL, Sutherland RL: Effect of sodium butyrate on estrogen receptor and epidermal growth factor receptor gene expression in human breast cancer cell lines. J Biol Chem 267:18008–18012, 1992.

    Google Scholar 

  30. Mukku VR, Stancel GM: Regulation of epidermal growth factor receptor by estrogen. J Biol Chem 260:9820–9824, 1985.

    Google Scholar 

  31. Lingham RB, Stancel GM, Loose-Mitchell DS: Estrogen regulation of epidermal growth factor receptor messenger ribonucleic acid. Mol Endocrinol 2:230–235, 1988.

    Google Scholar 

  32. Murphy LC, Murphy LJ, Shiu RPC: Progestin regulation of EGF-receptor mRNA accumulation in T47D human breast cancer cells. Biochem Biophys Res Commun 150:192–196, 1988.

    Google Scholar 

  33. Koga M, Eisman JA, Sutherland RL: Regulation of epidermal growth factor receptor levels by 1,25-dihydroxyvitamin D3 in human breast cancer cells. Cancer Res 48:2734–2739, 1988.

    Google Scholar 

  34. Frampton RJ, Omond SA, Eisman JA: Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites. Cancer Res 43:4443–4447, 1983.

    Google Scholar 

  35. Haussler CA, Marion SL, Pike JW, Haussler MR: 1,25-dihydroxyvitamin D3 inhibits the clonogenic growth of transformed cells via its receptor. Biochem Biophys Res Commun 139:136–143, 1986.

    Google Scholar 

  36. Desprez P-Y, Pujol D, Falette N, Lefebvre M-F, Saez S: 1,25-dihydroxyvitamin D3 increases epidermal growth factor receptor gene expression in BT-20 breast carcinoma cells. Biochem Biophys Res Commun 176:1–6, 1991.

    Google Scholar 

  37. Chouvet C, Vicard E, Devonec M, Saez S: 1,25-dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20). J Steroid Biochem 24:373–376, 1986.

    Google Scholar 

  38. Vonderhaar BK, Tang E, Lyster RR, Nascimento MCS: Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands. Endocrinology 119:580–585, 1986.

    Google Scholar 

  39. Mukku VR: Regulation of epidermal growth factor receptor levels by thyroid hormone. J Biol Chem 259:6543–6547, 1984.

    Google Scholar 

  40. Hudson LG, Santon JB, Glass CK, Gill GN: Ligandactivated thyroid hormone and retinoic acid receptors inhibit growth factor receptor promoter expression. Cell 62:1165–1175, 1990.

    Google Scholar 

  41. Kesavan P, Mukhopadhayay S, Murphy S, Rengaraju M, Lazar MA, Das M: Thyroid hormone decreases the expression of epidermal growth factor receptor. J Biol Chem 266:10282–10286, 1991.

    Google Scholar 

  42. Thompson KL, Rosner MR: Regulation of epidermal growth factor receptor gene expression by retinoic acid and epidermal growth factor. J Biol Chem 264:3230–3234, 1989.

    Google Scholar 

  43. Hudson LG, Santon JB, Gill GN: Regulation of epidermal growth factor receptor gene expression. Mol Endocrinol 3:400–408, 1989.

    Google Scholar 

  44. Zheng Z-S, Polakowska R, Johnson A, Goldsmith LA: Transcriptional control of epidermal growth factor receptor by retinoic acid. Cell Growth Differ 3:225–232, 1992.

    Google Scholar 

  45. Hudson LG, Thompson KL, Xu J, Gill GN: Identification and characterization of a regulated promoter element in the epidermal growth factor receptor gene. Proc Natl Acad Sci USA 87:7536–7540, 1990.

    Google Scholar 

  46. Haley JD, Waterfield MD: Contributory effects of de novo transcription and premature transcript termination in the regulation of human epidermal growth factor receptor proto-oncogene RNA synthesis. J Biol Chem 266:1746–1753, 1991.

    Google Scholar 

  47. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH: Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425, 1984.

    Google Scholar 

  48. Johnson AC, Ishii S, Jinno Y, Pastan I, Merlino GT: Epidermal growth factor receptor gene promoter. Deletion analysis and identification of nuclear protein binding sites. J Biol Chem 263:5693–5699, 1988.

    Google Scholar 

  49. Kageyama R, Merlino GT, Pastan I: Epidermal growth factor (EGF) receptor gene transcription. Requirement for Spl and an EGF receptor-specific factor. J Biol Chem 263:6329–6336, 1988.

    Google Scholar 

  50. Kageyama R, Merlino GT, Pastan I: A transcription factor active on the epidermal growth factor receptor gene. Proc Natl Acad Sci USA 85:5016–5020, 1988.

    Google Scholar 

  51. Merlino GT, Johnson AC, Kageyama R, Pastan I: Isolation and characterization of DNA-binding factors regulating transcription of the EGF receptor protooncogene.In: Lippman ME, Dickson RB (eds) Growth Regulation of Cancer II: UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 115. Alan R Liss, Inc, New York, 1989.

    Google Scholar 

  52. Ishii S, Xu Y-H, Stratton RH, Roe BA, Merlino GT, Pastan I: Characterization and sequence of the promoter region of the human epidermal growth factor receptor gene. Proc Natl Acad Sci USA 82:4920–4924, 1985.

    Google Scholar 

  53. Kageyama R, Pastan I: Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell 59:815–825, 1989.

    Google Scholar 

  54. Maekawa T, Imamoto F, Merlino GT, Pastan I, Ishii S: Cooperative function of two separate enhancers of the human epidermal growth factor receptor protooncogene. J Biol Chem 264:5488–5494, 1989.

    Google Scholar 

  55. Chrysogelos SA: Regulation of the EGFR gene in breast cancer cell lines: chromatin structure analysis reveals the involvement of intron 1 sequences. J Cell Biochem 17A:69, 1993.

    Google Scholar 

  56. Ennis BW, Valverius E, Bates SE, Lippman ME, Bellot F, Kris R, Schlessinger J, Masui H, Goldberg A, Mendelsohn J, Dickson RB: Anti EGF-receptor antibodies inhibit the autocrine stimulated growth of MDA-MB-468 human breast cancer cells. Mol Endocrinol 3:1830–1838, 1989.

    Google Scholar 

  57. Bates SE, Valverius EM, Ennis BW, Bronzert DA, Sheridan JP, Stampfer MR, Mendelsohn J, Lippman ME, Dickson RB: Expression of the transforming growth factor-α/epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinol 126:596–607, 1990.

    Google Scholar 

  58. Valverius EM, Ciardiello F, Heldin NE, Blondel B, Merlo G, Smith G, Stampfer MR, Lippman ME, Dickson RB, Salomon DS: Stromal influences on transformation of human mammary epithelial cells overexpressing c-myc and SV40T. J Cell Physiol 145:207–216, 1990.

    Google Scholar 

  59. Velu TJ, Bequinot L, Vass MC, Willingham MC, Merlino GT, Pastan I, Lowy D: Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408–1410, 1987.

    Google Scholar 

  60. DiFiore P, Pierce J, Fleming T, Hazon R, Ullrich A, King CR, Schlessinger J, Aaronson S: Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH3T3 cells. Cell 51:1063–1070, 1987.

    Google Scholar 

  61. DiMarco E, Pierce JH, Fleming TP, Kraus MH, Molloy CJ, Aaronson SA, DiFiore PP: Autocrine interaction between TGFα and the EGF-receptor: quantitative requirements for induction of the malignant phenotype. Oncogene 4:831–839, 1990.

    Google Scholar 

  62. Valverius EM, Velu T, Shonkar V, Ciardiello F, Kim N, Salomon DS: Overexpression of epidermal growth factor receptor in human breast cancer cells fails to induce an estrogen-independent phenotype. Int J Cancer 46:712–718, 1990.

    Google Scholar 

  63. Clarke R, Brunner N, Katz D, Glanz P, Dickson RB, Lippman ME, Kern FG: The effects of a constitutive expression of transforming growth factor alpha on the growth of MCF-7 human breast cancer cells in vitro and in vivo. Mol Endocrinol 3:372–380, 1989.

    Google Scholar 

  64. Agthoven TV, Agthoven TLAV, Portengen H, Foekens JA, Dorssers LCJ: Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells. Cancer Res 52:5082–5088, 1992.

    Google Scholar 

  65. Liu YE, Lupu R, Kern FG: Characterization of MCF-7 breast carcinoma cells singly or doubly transfected with c-erbB2 and EGFR. Proc AACR 33:368 (Abs #2198), 1992.

    Google Scholar 

  66. Miller DL, Cheville AL, El-Ashry D, Liu Y, Kern FG: Emergence of MCF-7 cells overexpressing a transfected epidermal growth factor under estrogendepleted conditions: evidence for a role of EGFR in breast cancer growth and progression. Submitted.

  67. Harris AL, Nicholson S, Sainsbury JR, Farndon J, Wright C: Epidermal growth factor receptors in breast cancer: association with early relapse and death, poor response to hormones and interaction with neu. J Steroid Biochem 34:123–131, 1989.

    Google Scholar 

  68. Goldman R, Levy RB, Peles E, Yarden Y: Hetero-dimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 29:11024–11028, 1990.

    Google Scholar 

  69. Quian XL, Decker SJ, Greene MI: p185-c-neu and epidermal growth factor receptor associate into a structure composed of activated kinases. Proc Natl Acad Sci USA 89:1330–1334, 1992.

    Google Scholar 

  70. Ciardiello F, Gottardis M, Basolo F, Pepe S, Normanno N, Dickson R, Bianco R, Salomon DS: Additive effects of c-erbB2, c-Ha-ras and transforming growth factor α genes in the in vitro transformation of human mammary epithelial cells. Carcinogenesis 6:43–52, 1992.

    Google Scholar 

  71. Lee LW, Raymond VW, Tsao MS, Lee DC, Earp HS, Grisham JW: Clonal cosegregation of tumorigenicity with overexpression of c-myc and transforming growth factor α genes in chemically transformed rat liver epithelial cells. Cancer Res 51:5238–5244, 1991.

    Google Scholar 

  72. Hall JM, Lee MK, Newman B: Linkage of early onset familial breast cancer to chromosome 17q21. Science 250:1684–1689, 1990.

    Google Scholar 

  73. Telang NT, Osborne MP, Sweterlitsch LA, Tarayanan R: Neoplastic transformation of mouse mammary epithelial cells by deregulated myc expression. Cell Regulation 1:863–872, 1990.

    Google Scholar 

  74. Cullen KJ, Lippman ME: Stromal-epithelial interactions in breast cancer.In: Dickson RB, Lippman ME (eds) Genes, Oncogenes, and Hormones. Kluwer, Boston, 1992, pp 413–433.

    Google Scholar 

  75. Nishibe S, Carpenter G: Tyrosine phosphorylation and the regulation of cell growth: growth factor-stimulated tyrosine phosphorylation of phospholipase C. Semin Cancer Biol 1:285–292, 1990.

    Google Scholar 

  76. Roberts TM: A signal chain of events. Nature 360:534, 1992.

    Google Scholar 

  77. Segatto O, Lonardo F, Wexler D, Fazioli F, Pierce JH, Bottaro DP, White MF, DiFiore PP: The juxtamembrane regions of the EGF receptor and gp185-erbB2 determine the specificity of signal transduction. Mol Cell Biol 11:3191–3202, 1991.

    Google Scholar 

  78. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212, 1990.

    Google Scholar 

  79. Honegger AM, Schmidt A, Ullrich A, Schlessinger J: Evidence for epidermal growth factor (EGF)-induced intermolecular antophosphorylation of the EGF receptors in living cells. Mol Cell Biol 10:4035–4044, 1990.

    Google Scholar 

  80. Redemann N, Holzmann B, von Ruden T, Wagner EF, Schlessinger J, Ullrich A: Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants. Mol Cell Biol 12:491–498, 1992.

    Google Scholar 

  81. Panayotou G, Waterfield MD: The assembly of signalling complexes by receptor tyrosine kinases. Bio-Essays 15:171–177, 1993.

    Google Scholar 

  82. Pazin MJ, Williams LT: Triggering signalling cascades by receptor tyrosine kinases. Trends Biochem Sci 17:374–377, 1992.

    Google Scholar 

  83. Carpenter G: Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J 6:3283–3289, 1992.

    Google Scholar 

  84. Soderquist AM, Todderud G, Carpenter G: Elevated membrane association of phospholipase C-γ1 in MDA-468 mammary tumor cells. Cancer Res 52:4526–4529, 1992.

    Google Scholar 

  85. Feng G-S, Hui C-C, Pawson T: SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259:1607–1610, 1993.

    Google Scholar 

  86. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556, 1993.

    Google Scholar 

  87. Margolis B: Proteins with SH2 domains: transducers in the tyrosine kinase signaling pathway. Cell Growth Diff 3:73–80, 1992.

    Google Scholar 

  88. Karin M, Smeal T: Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17:418–422, 1992.

    Google Scholar 

  89. Cohen P: Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17:388–392, 1992.

    Google Scholar 

  90. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B, Schlessinger J: Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363:85–90, 1993.

    Google Scholar 

  91. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D: The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363:83–87, 1993.

    Google Scholar 

  92. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA: Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–48, 1993.

    Google Scholar 

  93. McCormick F: How receptors turn Ras on. Nature 363:15–16, 1993.

    Google Scholar 

  94. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D: Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363:88–90, 1993.

    Google Scholar 

  95. Medema RH, De Vries-Smits AMM, Van Der Zon GCM, Maassen JA, Bos JL: Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras. Mol Cell Biol 13:155–162, 1993.

    Google Scholar 

  96. Bollag G, McCormick: Regulators and effectors of ras proteins. Annu Rev Cell Biol 7:601–632, 1991.

    Google Scholar 

  97. Chardin P, Camonis JH, Gale NW, Van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D: Human Sos 1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260:1338–1346, 1993.

    Google Scholar 

  98. Liu X, Pawson T: The epidermal growth factor receptor phosphorylates GTPase-activating protein (GAP) at Tyr-460, adjacent to the GAP SH2 domains. Mol Cell Biol 11:2511–2516, 1991.

    Google Scholar 

  99. Ellis C, Moran M, McCormick F, Pawson T: Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343:377–381, 1990.

    Google Scholar 

  100. Dickson B, Sprenger F, Morrison D, Hafen E: Raf functions downstream of Ras1 in the sevenless signal transduction pathway. Nature 360:600–603, 1992.

    Google Scholar 

  101. Zhang X-F, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J: Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–310, 1993.

    Google Scholar 

  102. App H, Hazan R, Zilberstein A, Ullrich A, Schlessinger J, Rapp U: Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor. Mol Cell Biol 11:913–919, 1991.

    Google Scholar 

  103. Warne PH, Viciana PR, Downward J: Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355, 1993.

    Google Scholar 

  104. Kyriakis JM, App H, Zhang X-F, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358:417–419, 1992.

    Google Scholar 

  105. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and RAF. Science 260:315–319, 1993.

    Google Scholar 

  106. Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-raf in NIH 3T3 cells and in vitro. Science 257:1404–1407, 1992.

    Google Scholar 

  107. Moodie SA, Willumsen BM, Weber MJ, Wolfman A: Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase. Science 260:1658–1660, 1993.

    Google Scholar 

  108. Lane HA, Fernandez A, Lamb NJC, Thomas G: p70s6k function is essential for G1 progression. Nature 363:170–173, 1993.

    Google Scholar 

  109. Nishida E, Gotoh Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–130, 1993.

    Google Scholar 

  110. Ransone LJ, Verma I: Nuclear proto-oncogenes FOS and JUN. Annu Rev Cell Biol 6:539–557, 1990.

    Google Scholar 

  111. Kato GJ, Dang CV: Function of the c-Myc oncoprotein. FASEB J 6:3065–3072, 1992.

    Google Scholar 

  112. Franklin CC, Unlap T, Adler V, Kraft AS: Multiple signal transduction pathways mediate c-Jun protein phosphorylation. Cell Growth Differ 4:377–385, 1993.

    Google Scholar 

  113. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H: Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359:423–425, 1992.

    Google Scholar 

  114. Reed S: The role of p34 kinases in the G1 to S-phase transition. Annu Rev Cell Biol 8:529–561, 1992.

    Google Scholar 

  115. Atherton-Fessler S, Parker LL, Geahlen RL, Piwnica-Worms H: Mechanisms of p34cdc2 regulation. Mol Cell Biol 13: 1675–1685, 1993.

    Google Scholar 

  116. Draetta G: Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biochem Sci 15:379–383, 1990.

    Google Scholar 

  117. Musgrove EA, Hamilton JA, Lee CSL, Sweeney KJE, Watts CKW, Sutherland RL: Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13:3577–3587, 1993.

    Google Scholar 

  118. Shrestha P: Proliferating cell nuclear antigen in breast lesions: correlation of c-erbB-2 oncoprotein and EGF receptor and its clinicopathological significance in breast cancer. Virchows Arch 421:193–202, 1992.

    Google Scholar 

  119. Kreipe H, Feist H, Fischer L, Felgner J, Heidorn K, Mettler L, Parwaresch R: Amplification of c-myc but not of c-erbB-2 is associated with high proliferative capacity in breast cancer. Cancer Res 53:1956–1961, 1993.

    Google Scholar 

  120. Monaghan P, Perusinghe NP, Nicholson RI, McClelland RA, O'Hare MJ, Lane DP, Jayatilake H, Gusterson BA: Growth factor stimulation of proliferating cell nuclear antigen (PCNA) in human breast epithelium in organ culture. Cell Biol Intl Report 15:561–570, 1991.

    Google Scholar 

  121. Hunter T, Pines J: Cyclins and Cancer. Cell 66:1071–1074, 1991.

    Google Scholar 

  122. Lewin B: Oncogenic conversion by regulatory changes in transcription factors. Cell 64:303–312, 1991.

    Google Scholar 

  123. Berns EMJJ, Klijn JGM, Van Putten WLJ, Van Staveren IL, Portengen H, Foekens JA: c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 52:1107–1113, 1992.

    Google Scholar 

  124. Keyomarski K, Pardee AB: Redundant cyclin over-expression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90:1112–1116, 1993.

    Google Scholar 

  125. Bandyopadhyay GK, Hwang S, Imagawa W, Nandi S: Role of polyunsaturated fatty acids as signal transducers: amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukotr Essent Fatty Acids 48:71–78, 1993.

    Google Scholar 

  126. Lichtner RB, Wiedemuth M, Noeskejungblut C, Schirrmacher V: Rapid effects of EGF on cytoskeletal structures and adhesive properties of highly metastatic rat mammary adenocarcinoma cells. Clin Exp Metast 11:113–120, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrysogelos, S.A., Dickson, R.B. EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res Tr 29, 29–40 (1994). https://doi.org/10.1007/BF00666179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666179

Key words

Navigation