Skip to main content
Log in

Bone loss and forms of tibial condylar fracture

  • Original Articles
  • Published:
Archives of orthopaedic and traumatic surgery Aims and scope Submit manuscript

Summary

Bone loss and fracture type were determined in 358 tibial condylar fractures. Degree of osteoporosis at the knee was defined by analogy to Singh's grades of osteoporosis at the hip and to Jhamaria's classification of osteoporosis at the calcaneum: grade V — normal; grade IV — slight reduction of trabecular bone; grade III — osteoporosis, predominantly of trabecular bone; grade II — osteoporosis of trabecular and cortical bone. Five fracture types were distinguished, with the component of trabecular bone compression increasing from a to e: a — pure split fractures; b — split fractures with displacement of a piece of the articular surface; c — split compression fractures; d — local compression fractures; e — compression of a whole condyle. There was a highly significant rank correlation between the two sets of ordered categories. Fractures in osteoporotics tended to involve the lateral condyle; this is explained by the fact that crush fractures occurred more frequently at the lateral condyle. The influence of bone loss on fracture type was demonstrated to be independent of age. A clear understanding of these associations concerning three variables at a time was reached by the use of log-linear-model analysis for cross-classified qualitative data.

Zusammenfassung

Bei 358 Frakturen der proximalen Tibia wurden der röntgenologisch erkennbare Knochenschwund und die Frakturform festgestellt. Entsprechend dem Singh-Index zur Bestimmung der Osteoporose am proximalen Femur und der Klassifikation der Trabekelstruktur am Fersenbein nach Jhamaria wurden folgende Osteoporosegrade am Knie definiert: Grad V — normal, Grad IV — Spongiosastruktur leicht vermindert, Grad III — Osteoporose betrifft vorwiegend die Spongiosa, Grad II —Osteoporose von Spongiosa und Kompakta. Fünf Frakturformen wurden unterschieden, wobei das Ausmaß der Spongiosakompression von a bis e ansteigt: a — reine Spaltfrakturen, b — Spaltfrakturen mit Abscherung eines Gelenkflächenteiles, c —Spaltkompressionsfrakturen, d — Frakturen mit lokaler Kompression, e — Frakturen mit Kompression eines ganzen Kondyls. Zwischen diesen beiden Merkmalen, deren Ausprägungen Rangklassen bilden, war eine hochsignifikante Rangkorrelation nachzuweisen. Brüche osteoporotischer Knochen betrafen vermehrt den lateralen Gelenksknorren, was dadurch statistisch zu erklären war, daß dieser sich für Kompressionsfrakturen als anfälliger erwies. Die Beziehung zwischen Osteoporose und Frakturform war nicht abhängig vom Lebensalter. Solche Zusammenhange zwischen je drei Variablen konnten übersichtlich dargestellt wurden, indem die Häufigkeitstabellen durch Log-lineare Modelle interpretiert wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollinger G, Herrmann A, Montmann V (1983) BMDP Statistikprogramme für die Bio-, Human- und Sozialwissenschaften. Fischer, Stuttgart, pp 111–126

    Google Scholar 

  2. Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1176

    Google Scholar 

  3. Duparc J, Ficat P (1960) Fractures articulaires de l'extrémité supérieure du tibia. Rev Chir Orthop 46:399–486

    Google Scholar 

  4. Fienberg SE (1980) The analysis of cross-classified categorical data, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  5. Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16:965–969

    Google Scholar 

  6. Hirsch G, Sullivan L (1965) Experimental knee-joint fractures. Acta Orthop Scand 36:391–399

    Google Scholar 

  7. Iskrant AP, Smith RW (1969) Osteoporosis in women 45 years and over related to subsequent fractures. Public Health Rep 84:33–38

    Google Scholar 

  8. Jhamaria NL, Lal KB, Udawat M, Banerji P, Kabra SG (1983) The trabecular pattern of the calcaneum as an index of osteoporosis. J Bone Joint Surg [Br] 65:195–198

    Google Scholar 

  9. Newton-John HF, Morgan DB (1970) The loss of bone with age, osteoporosis and fractures. Clin Orthop 71:229–252

    Google Scholar 

  10. Niethard FU, Plaue R (1976) Rontgenologische und morphologische Untersuchungen an experimentell erzeugten Schienbeinkopfbrüchen. Arch Orthop Unfallchir 85:71–80

    Google Scholar 

  11. Rybicki EF, Simonen FA, Weis EB (1972) On the mathematical analysis of stress in the human femur. J Biomech 5:203–215

    Google Scholar 

  12. Schatzker M, McBroom R, Bruce D (1979) The tibial plateau fracture. Clin Orthop 138:94–104

    Google Scholar 

  13. Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg [Am] 52:457–467

    Google Scholar 

  14. Zain Elabdien BS, Olerud S, Karlström G (1984) The influence of age on the morphology of trochanteric fractures. Arch Orthop Trauma Surg 103:156–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltin, E. Bone loss and forms of tibial condylar fracture. Arch. Orth. Traum. Surg. 106, 341–348 (1987). https://doi.org/10.1007/BF00456867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00456867

Keywords

Navigation