Skip to main content
Log in

Vitamin E and selenium participation in fatty acid desaturation A proposal for an enzymatic function of these nutrients

  • Current Thinking
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

A critical review of the literature on the effects of vitamin E and selenium deficiences on unsaturated fatty acid metabolism reveals that some of these effects are inconsistent with the antioxidant hypothesis of these nutrients as their only biological function. On the basis of these data it is proposed that vitamin E and selenium play a role in the desaturation of n-3 and n-6 polyunsaturated fatty acids by participating in the microsomal electron transport chain and in a proposed peroxidase moiety of the desaturase complex, respectively. A re-interpretation of the experimental literature in terms of the proposed hypothesis is provided, with some suggestions to test its main tenets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans HM, Bishop KS: On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651, 1922.

    Google Scholar 

  2. Mason KE: The first two decades of vitamin E. Fed Proc 36:1906–1910, 1977.

    Google Scholar 

  3. McCay PE, King MM: Biochemical function. In E Machlin (ed). Vitamin E: A Comprehensive Treatise. Marcel Dekker, Inc., New York, 1980, pp 289–317.

    Google Scholar 

  4. Prensky AL: Vitamin E and the nervous system. Develop Med Child Neurol 26:669–676, 1984.

    Google Scholar 

  5. Dam H: Influence of antioxidants and redox substances on signs of vitamin E deficiency. Pharmacol Rev 24:1–16, 1957.

    Google Scholar 

  6. Tappel AL: Vitamin E as the biological lipid antioxidant. Vit Horm 20:493–510, 1962.

    Google Scholar 

  7. Green JL, Diplock AT, Bunyan J, McHale D, Muthy IR: Vitamin E and stress. I. Dietary unsaturated fatty acid stress and the metabolism of alpha-tocopherol in the rat. Br J Nutr 69:69–101, 1967.

    Google Scholar 

  8. Green JL, Diplock AT, Bunyan J, Muthy IR, McHale D: Vitamin E and stress. 4. The metabolism of D-alpha-tocopherol during nutritional hepatic necrosis in the rat and the effects of selenium, methionine and unsaturated fatty acids. Br J Nutr 21:497–506, 1967.

    Google Scholar 

  9. Schwartz K: The cellular mechanisms of vitamin E action: direct and indirect effects of alpha-tocopherol on mitochondrial respiration. Ann NY Acad Sci 203:45–52, 1972.

    Google Scholar 

  10. Hayes KC, Nielsen SW, Rousseau JE: Vitamin E deficiency and fat stress in the dog. J Nutr 99:196–209, 1969.

    Google Scholar 

  11. Molenaar I, Vos J, Hommes FA: Effect of vitamin E deficiency on cellular membranes. Vit Horm 30:45–82, 1972.

    Google Scholar 

  12. Lucy JA: Functional aspects of biological membranes; a suggested structural role for vitamin E in the control of membrane permeability and stability. Ann NY Acad Sci 203:4–11, 1972.

    Google Scholar 

  13. Diplock AT: Possible stabilizing effect of vitamin E on microsomal, membrane-bound, selenide-containing proteins and drug-metabolizing enzyme systems. Am J Clin Nutr 27:995–1004, 1974.

    Google Scholar 

  14. McCay PB: Vitamin E: interactions with free radicals and ascorbate. Ann Rev Nutr 5:323–340, 1985.

    Google Scholar 

  15. MacKenzie CG: Experimental muscular dystrophy. In RM Herriot (ed). Symposium on Nutrition. The Johns Hopkins Press, Baltimore, 1953, pp 136–197.

    Google Scholar 

  16. Gilbert JJ: Effect of tocopherol on the growth and development of rotifers. Am J Clin Nutr 27:1005–1016, 1974.

    Google Scholar 

  17. Nelson JS, Fitch CD, Fisher VW, Broun GO, Chou AC: Progressive neuropathologic lesions in vitamin E-deficient Rhesus monkeys. J Neuropath Exp Neurol 40:166–186, 1981.

    Google Scholar 

  18. Prasad KN, Ramanujam S, Gaudreau D: Vitamin E induces morphological differentiation and increases the effect of ionizing radiation on neuroblastoma cells in culture. Proc Soc Exp Biol Med 161:570–573, 1979.

    Google Scholar 

  19. Vanderzaut ES: Wheat germ diets for insects: rearing the Boll Weevil and the salt-marsh caterpillar. Ann Entomol Soc Am 60:1062–1066, 1967.

    Google Scholar 

  20. Giasuddin ASM, Diplock AT: The influence of vitamin E and selenium on the growth and plasma membrane permeability of mouse fibroblasts in culture. Arch Biochem Biophys 1979:270–280, 1979.

    Google Scholar 

  21. Giasuddin ASM, Diplock AT: The influence of vitamin E on membrane lipids of mouse fibroblasts in culture. Arch Biochem Biophys 210:348–362, 1981.

    Google Scholar 

  22. Witting LA, Horwitt MK: Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr 82:19–33, 1964.

    Google Scholar 

  23. Witting LA: The oxidation of alpha-tocopherol during the autoxidation of ethyl oleate, linoleate, and arachidonate. Arch Biochem Biophys 129:142–151, 1969.

    Google Scholar 

  24. Dam H, Nielsen GK, Prange I, Sondergaard E: Influence of linoleic and linolenic acids on symptoms of vitamin E deficiency in chicks. Nature 182:802–803, 1958.

    Google Scholar 

  25. Century B, Horwitt MK: Effect of fatty acids on chick encephalomalacia. Proc Soc Exp Biol Med 102:375–377, 1959.

    Google Scholar 

  26. Machlin LJ, Gordon RS: Linoleic acid as causative agent of encephalomalacia in chickens fed oxidized fats. Proc Soc Exp Biol Med 103:659–663, 1960.

    Google Scholar 

  27. Crawford MA, Budowski P, Hassam AG: Dietary management of multiple sclerosis. Proc Nutr Soc 38:373–389, 1979.

    Google Scholar 

  28. Budowski P, Hawley CM, Crawford MA: L'effect protecteur de l'acide alpha-linolenique sur l'encephalomalacie chez le poulet. Ann Nutr Alim 34:389–400, 1980.

    Google Scholar 

  29. Century B, Witting LA, Harvey CC, Horwitt MK: Interrelationships of dietary lipids upon fatty acid composition of brain mitochondria, erythrocytes and heart tissue in chicks. Am J Clin Nutr 13:362–368, 1963.

    Google Scholar 

  30. Budowski P, Flint N, Crawford MA: Protective effects of omega3-polyunsaturated fatty acids in chick nutritional encephalomalacia. Nutr Soc Proc 38, 92A, 1979.

  31. Machlin LJ: Effect of dietary linolenate on the proportion of linoleate and arachidonate in liver fat. Nature 194:868–869, 1962.

    Google Scholar 

  32. Marco GJ, Machlin LJ, Emery E, Gordon RS: Dietary effects of fats upon fatty acid composition of the mitochondria. Arch Biochem Biophys 94:115–120, 1961.

    Google Scholar 

  33. Vatassery GT, Angerhofer CK, Knox CA, Deshmukh DS: Concentrations of vitamin E in various neuroanatomical regions and subcellular fractions, and the uptake of vita min E by specific areas, of rat brain. Biochim Biophys Acta 792:118–122, 1984.

    Google Scholar 

  34. Vatassery GT, Angerhofer CK, Peterson FJ: Vitamin E concentrations in the brains and some selected peripheral tissues of selenium-deficient and vitamin E-deficient mice. J Neurochem 42:554–558, 1984.

    Google Scholar 

  35. Bruckner G, Infante JP, Combs GF: Effects of vitamin E and aspirin on the incidence of encephalomalacia, fatty acid status and serum thromboxane levels in chicks. J Nutr 113:1885–1890, 1983.

    Google Scholar 

  36. Mason KE: Changing concepts of the antisterility vitamin (vitamin E). Yale J Biol Med 14:605–617, 1942.

    Google Scholar 

  37. Nelson JS: Pathology of vitamin E deficiency. In LJ Machlin (ed). Vitamin E: A Comprehensive Treatise. Marcel Dekker, Inc., New York 1980, pp 397–427.

    Google Scholar 

  38. Witting LA, Horwitt MK: The effect of antioxidant deficiency on tissue lipid composition in the rat. I. Gastrocnemius and quadriceps muscle. Lipids 2:89–96, 1967.

    Google Scholar 

  39. Pappenheimer AM, Goetsch M: Transmission of nutritional muscular dystrophy to rabbits in utero. Proc Soc Exp Biol Med 43:522–525, 1936.

    Google Scholar 

  40. Hutcheson LM, Hill DC, Jenkins KI: Influence of dietary fat on the efficacy of agents protecting against muscular dystrophy in the chick. Poultry Sci 42:846–854, 1963.

    Google Scholar 

  41. Muth OH: White muscle disease, a selenium-responsive myopathy. Am Vet Med Assoc J 142:272–277, 1963.

    Google Scholar 

  42. Witting LA: The interrelationships of polyunsaturated fatty acids and antioxidants in vivo. Progr Chem Fats Lipids 9:519–553, 1970.

    Google Scholar 

  43. Muth OH, Schubert JR, Oldfield JE: White muscle disease (myopathy) in lambs and calves. VII. Etiology and prophylaxis. Am J Vet Res 22:466–469, 1961.

    Google Scholar 

  44. Brin M, Barker MO, Horn L, Reed G: Analysis of skeletal muscle from vitamin E-deficient and supplemented rabbits fed polyunsaturated fatty acids. Fed Proc 32:943 Abs, 1973.

    Google Scholar 

  45. Witting LA, Theron JJ, Horwitt MK: The effect of antioxidant deficiency on tissue lipid compositon in the rat. II. Liver. Lipids 2:97–102, 1967.

    Google Scholar 

  46. Evans HM, Burr GO: Development of paralysis in the suckling young of mothers deprived of vitamin E. J Biol Chem 76:273–297, 1928.

    Google Scholar 

  47. Rumery RE, Mauer SI, Mason KE: Muscle protein fractions in late-lactation paralysis of vitamin E deficient rats. J Exp Zool 129:495–503, 1955.

    Google Scholar 

  48. Pappenheimer AM: Muscular dystrophy in mice on vitamin E-deficient diet. Am J Pathol 18:169–175, 1942.

    Google Scholar 

  49. Tobin CE: Effects of vitamin E deficiency and cod liver oil on myopathy in mice. Arch Pathol 50:385–392, 1950.

    Google Scholar 

  50. Pappenheimer AM, Goetsch M, Ritzman JR, Schogeleff C: Cure of muscle lesions in guinea pigs with alpha-tocopherol. Lab Invest 5:139–144, 1956.

    Google Scholar 

  51. Jenkins KJ, Hidiroglou M, MacKay RR, Proulx JG: Influence of selenium and linoleic acid on the development of nutritional muscular dystrophy in beef calves, lambs and rabbits. Can J Anim Sci 50:137–146, 1970.

    Google Scholar 

  52. Whanger PD, Weswig PH, Muth OH, Oldfield JE: Selenium and white muscle disease: effect of sulfate and energy levels on plasma enzymes and ruminal microbes. Am J Ver Res 31:965–972, 1970.

    Google Scholar 

  53. Hove EL, Seibold HR: Liver necrosis and altered fat composition in vitamin E-deficient swine. J Nutr 56:173–186, 1955.

    Google Scholar 

  54. Coniglio JG, Whorton AR, Beckman JK: Essential fatty acids in testes. Adv Exp Med Biol 83:575–589, 1977.

    Google Scholar 

  55. Gabriel E, Machlin LJ: Selection of rats for high and low susceptibility to vitamin E deficiency. Fed Proc 41:344 Abs, 1982.

    Google Scholar 

  56. Yang NJ, Desai ID: Glutathione peroxidase and vitamin E relationship. In C De Duve and O Hayaishi(eds). Tocopherol, Oxygen and Biomembranes. Elsevier, Amsterdam, 1978, pp 233–245.

    Google Scholar 

  57. Jensen GE, Clausen J: Glutathione peroxidase activity in vitamin E and essential fatty acid deficient rats. Ann Nutr Metab 25:27–37, 1981.

    Google Scholar 

  58. Xu GL, Diplock AT: Glutathione peroxidase (EC 1.11.1.9), glutathione-S-transferase (EC 2.5.1.13), superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) activities in tissues of ducklings deprived of vitamin E and selenium. Br J Nutr 50:437–444, 1983.

    Google Scholar 

  59. Packer JE, Slater TF, Willson RL: Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737–738, 1979.

    Google Scholar 

  60. Bascetta E, Gunstone FD, Walton JC: Electron spin resonance study of the role of vitamin E and vitamin C in the inhibition of fatty acid oxidation in a model membrane. Chem Phys Lipids 33:207–210, 1983.

    Google Scholar 

  61. Kaufman S: Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem 234:2677–2682, 1959.

    Google Scholar 

  62. Oshino N, Imai Y, Sato R: A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J Biochem (Japan) 69:155–167, 1971.

    Google Scholar 

  63. Ernster L, Lee CP: Biological oxidoreductions. Ann Rev Biochem 33:729–788, 1964.

    Google Scholar 

  64. Pullman ME, Schatz G: Mitochondrial oxidations and energy coupling. Ann Rev Biochem 36:539–598, 1967.

    Google Scholar 

  65. McCay PB, Pfeifer PM, Stipe WH: Vitamin E protection of membrane lipids during electron transport functions. Ann NY Acad Sci 203:62–73, 1972.

    Google Scholar 

  66. Svingen BA, Buege JA, O'Neal FO, Aust SD: The mechanism of NADPH-dependent lipid peroxidation. J Biol Chem 254:5892–5899, 1979.

    Google Scholar 

  67. McCay PB, Gibson DD, Hornbrook KR: Glutathione-dependent inhibition of lipid peroxidation by a soluble, heat-labile factor not glutathione peroxidase. Fed Proc 40:199–205, 1981.

    Google Scholar 

  68. Bachur NR, Gordon SL, Gee MV: Anthracycline antibiotic augumentation of microsomal electron transport and free radical formation. Mol Pharmacol 13:901–910, 1977.

    Google Scholar 

  69. Reynolds ES: Free radical damage in liver. In WA Pryor (ed). Free Radicals in Biology, vol 4,Academic Press, New York, 1980, pp 49–94.

    Google Scholar 

  70. Ramasarma T: Generation of H2O2 in biomembranes. Biochim Biophys Acta 694:69–93, 1982.

    Google Scholar 

  71. Machlin LJ, Filipski R, Nelson J, Horn LR, Brin M: Effects of prolonged vitamin E deficiency in the rat. J Nutr 107:1200–1208, 1977.

    Google Scholar 

  72. Collins FD: Phospholipid metabolism in essential fatty acid deficient rats. Biochem Biophys Res Commun 9:289–292, 1962.

    Google Scholar 

  73. Wilson RB, Kula NS, Newberne PM, Conner MW: Vascular damage and lipid peroxidation in choline-deficient rats. Exp Mol Pathol 18:357–368, 1973.

    Google Scholar 

  74. Wilson RB, Newberne PM, Kula NS: Protection by antioxidants against arterial sclerosis of chronic choline-deficiency. Exp Mol Pathol 2:118–122, 1974.

    Google Scholar 

  75. Arvidson GAE: Biosynthesis of phosphatidylcholines in rat liver. Eur J Biochem 5:415–421, 1968.

    Google Scholar 

  76. Svennerholm L: Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9:570–579, 1968.

    Google Scholar 

  77. Tinoco J: Dietary requirements and functions of alpha-linolenic acid in animals. Progr Lipid Res 21:1–45, 1982.

    Google Scholar 

  78. Holman RT: Nutritional and metabolic interrelationships between fatty acids. Fed Proc 23:1062–1067, 1964.

    Google Scholar 

  79. Mead JF: The metabolism of the polyunsaturated fatty acids. Progr Chem Fats Lipids 9:159–192, 1968.

    Google Scholar 

  80. Brenner RR: The oxidative desaturation of unsaturated fatty acids in animals. Mol Cell Biochem 3:41–52, 1974.

    Google Scholar 

  81. Lamptey MS, Walker BL: A possible essential role for dietary linolenic acid in the development of the young rat. J Nutr 106:86–93, 1976.

    Google Scholar 

  82. Kramer JKG: Comparative studies on composition of cardiac phospholipids in rats fed different vegetable oils. Lipids 15:651–660, 1980.

    Google Scholar 

  83. Crawford MA, Gale MM, Woodford MH: Linoleic and linolenic acid elongation products in muscle tissue of Syncerus caffer and other ruminant species. Biochem J 115:25–27, 1969.

    Google Scholar 

  84. Stone KJ, Willis AL, Hart M, Kirtland SJ, Kernoff PB, McNicol GP: The metabolism of dihomo-gamma-linolenic acid in man. Lipids 14:174–180, 1979.

    Google Scholar 

  85. Huang YS, Horrobin DF, Mankin MS, Mitchell J: Effect of dietary alpha- and gamma-linolenic acid on tissue fatty acids in guinea pigs. Proc Soc Exp Biol Med 178:46–49, 1985.

    Google Scholar 

  86. Sellner PA, Hazel JR: Desaturation and elongation of unsaturated fatty acids in hepatocytes from thermally acclimated rainbow trout. Arch Biochem Biophys 213:58–66, 1982.

    Google Scholar 

  87. Hagar A, Hazel JR: The influence of thermal acclimation on the microsomal fatty acid composition and desaturase activity of rainbow trout liver. Mol Physiol 7:107–118, 1985.

    Google Scholar 

  88. Infante JP: Impaired biosynthesis of highly unsaturated phosphatidylcholines: a hypothesis on the molecular etiology of some muscular dystrophies. J Theor Biol 116:65–88, 1985.

    Google Scholar 

  89. Eddy DE, Harman D: Rat brain fatty acid composition: effect of dietary fat and age. J Gerontol 30:647–654, 1975.

    Google Scholar 

  90. Nouvelot A, Dedonder-Deccopman E, Sezille G, Paturneau-Jouas M, Dumont O, Masson M, Bourre JM: Influence de la teneur en acide linolenique du regime maternal sur la composition en acides gras polyinsatures des fractions subcellulaires au cours du developpement cerebral chez le rat. Ann Nutr Metab 27:233–241, 1983.

    Google Scholar 

  91. Bourre JM, Pascal G, Durand G, Masson M, Dumont O, Piciotti M: Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J Neurochem 43:342–348, 1984.

    Google Scholar 

  92. Carpenter MP: The lipid composition of maturing rat testis. The effect of alpha-tocopherol. Biochim Biophys Acta 231:52–79, 1971.

    Google Scholar 

  93. McKusick VA: Mendelian Inheritance in Man. The Johns Hopkins University Press, Baltimore, 1983, pp 1068–1069.

    Google Scholar 

  94. O'Brien JS, Sampson EL: Kinky hair disease. II. Biochemical studies. J Neuropath Exp Neurol 25:523–530, 1966.

    Google Scholar 

  95. Hagberg B, Sourander P, Svennerholm L: Late infantile progressive encephalopathy with disturbed polyunsaturated fat metabolism. Acta Paediatr Scand 57:495–499, 1968.

    Google Scholar 

  96. Svennerholm L, Haltia HM, Sourander P, Vanier MT: Polyunsaturated fatty acid lipidosis. II. Lipid biochemical studies. Acta Paediatr Scand 64:489–496, 1975.

    Google Scholar 

  97. Palmer DN, Husbands DR, Jolly RD: Phospholipid fatty acid in brains of normal sheep and sheep with ceroid-lipofuscinosis. Biochim Biophys Acta 834:159–163, 1985.

    Google Scholar 

  98. Siakotos AN, Koppang DVM, Youmans BS, Bucana C: Blood levels of alphatocopherol in a disorder of lipid peroxidation: Batten's disease. Am J Clin Nutr 27:1152–1157, 1974.

    Google Scholar 

  99. Ivy GO, Schottler F, Wenzel J, Baundry M, Lynch G: Inhibitors of lysosomal emzymes: accumulation of lipofuscin-like dense bodies in the brain. Science 226:985–987, 1984.

    Google Scholar 

  100. Lloyd-Still JD, Johnson SB, Holman RT: Essential fatty acid status in cystic fibrosis and the effects of safflower oil supplementation. Am J Clin Nutr 34:1–7, 1981.

    Google Scholar 

  101. Rivers JPW, Sinclair AJ, Crawford MA: Inability of the cat to desaturate essential fatty acids. Nature 258:171–173, 1975.

    Google Scholar 

  102. Sinclair AJ, Slaterry W, McLean JG, Monoger EA: Essential fatty acid deficiency and evidence for arachidonate synthesis in the cat. Br J Nutr 46:93–96, 1981.

    Google Scholar 

  103. Hassam AG, Rivers JPW, Crawford MA: The failure of the cat to desaturate linoleic acid; its nutritional implications. Nutr Metab 21:321–328, 1977.

    Google Scholar 

  104. Maeda M, Doi O, Akamatsu Y: Metabolic conversion of polyunsaturated fatty acids in mammalian cultured cells. Biochim Biophys Acta 530:153–164, 1978.

    Google Scholar 

  105. Spector AA, Mathur SN, Kaduce TL, Hyman BT: Lipid nutrition and metabolism of cultured mammalian cells. Progr Lipid Res 19:155–186, 1980.

    Google Scholar 

  106. Gaspar G, Alaniz MJT, Brenner RR: Incorporation and metabolisms of stearic, oleic, linoleic and alpha-linolenic acids in minimal deviation hepatoma 7288 C cells. Mol Cell Biochem 16:197–203, 1977.

    Google Scholar 

  107. Bieri JG, Andrews EL: Fatty acids in rat testes as affected by vitamin E. Biochem Biophys Res Commun 17:115–119, 1964.

    Google Scholar 

  108. Bieri JG, Prival EL: Effect of deficiencies of alpha-tocopherol, retinol and zinc on the lipid composition of rat testes. J Nutr 89:55–61, 1966.

    Google Scholar 

  109. McDowell LR, Froseth JA, Kroening GH, Haller WA: Effects of dietary vitamin E and oxidized cottonseed oil on SGOT, etythrocyte hemolysis, testicular fatty acids and testicular selenium in swine fed peas (Pisum sativum). Nutr Rep Int 9:359–369, 1974.

    Google Scholar 

  110. Bernhard K, Leisinger S, Pederson W: Vitamin E und Arachidonsaure, Bildung in der Leber. Helv Chim Acta 46:1767–1772, 1963.

    Google Scholar 

  111. Witting LA, Harmon EM, Horwitt MK: Extent of tocopherol depletion versus onset of creatinuria in rats fed saturated or unsaturated fats. Proc Soc Exp Biol Med 120:718–721, 1965.

    Google Scholar 

  112. Harmon EM, Witting LA, Horwitt MK: Relative rates of depletion of alpha-tocopherol and linoleic acid after feeding polyunsaturated fats. Am J Clin Nutr 18:243–248, 1966.

    Google Scholar 

  113. Fischer WC, Whanger PD: Fatty acid and glucose metabolism in selenium deficient rats and lambs. J Nutr 107:1493–1501, 1977.

    Google Scholar 

  114. Sprecher H: The total synthesis and metabolism of 7,10,13,16-docosatetraenoate in the rat. Biochim Biophys Acta 144:296–304, 1967.

    Google Scholar 

  115. Sprecher H: The synthesis and metabolism of hexadeca-4,7,10-trienoate, eicosa-8,11,14-trienoate docosa-10,13,16-trienoate and docosa-6,9,12,15 tetranoate in the rat. Biochim Biophys Acta 152:519–530, 1968.

    Google Scholar 

  116. Bernert JT, Sprecher H: Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition in rat liver lipids. Biochim Biophys Acta 398:354–363, 1975.

    Google Scholar 

  117. Sprecher HW: Regulation of polyunsaturated fatty acid biosynthesis in the rat. Fed Proc 31:1451–1457, 1972.

    Google Scholar 

  118. Lee DJW, Barnes MM: The effects of vitamin E deficiency on the total fatty acids and the phospholipid fatty acids of rat tissues. Br J Nutr 23:289–295, 1969.

    Google Scholar 

  119. Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R: Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci (USA) 71:4565–4569, 1974.

    Google Scholar 

  120. Okayasu T, Nagao M, Ishibashi T, Imai Y: Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch Biochem Biophys 206:21–28, 1981.

    Google Scholar 

  121. Infante JP: Impaired glycerophosphorylcholine synthesis in murine muscular dystrophy. Med Biol 63:81–87, 1985.

    Google Scholar 

  122. Infante JP: Defective synthesis of glycerophosphorylcholine in murine muscular dystrophy; the primary lesion? FEBS Lett 186:205–210, 1985.

    Google Scholar 

  123. Tinsley IJ, Arscott GH, Lowry RR: Fertility and testicular fatty acid composition in the chicken as influenced by vitamin E and ethoxyquin. Lipids 6:657–660, 1971.

    Google Scholar 

  124. Fansworth CC, Stone WL, Dratz EA: Effects of vitamin E and selenium deficiency on the fatty acid composition of rat retinal tissues. Biochim Biophys Acta 552:281–293, 1979.

    Google Scholar 

  125. Chan AC, Allen CE, Hegarty VJ: The effects of vitamin E and indomethacin on blood creatine phosphokinase and fatty acid composition of tissues from young rabbits. Am J Clin Nutr 32:1454–1461, 1979.

    Google Scholar 

  126. Carney JA, Walker BL: Metabolism of 1-14C-linoleic acid in the vitamin E-deficient rat testis. Nutr Rep Int 4:103–108, 1971.

    Google Scholar 

  127. Zilversmit DB, Enteman C, Fisher MC: On the calculation of turnover time and turnover rate from experiments involving the use of labeling agents. J Gen Physiol 26:325–332, 1943.

    Google Scholar 

  128. Gilliam JM, McCay PB: Lipid incorporation of acetate-1-C14 in tocopherol-deficient chicks. Fed Proc 25:241 Abs, 1966.

    Google Scholar 

  129. Infante JP: Biosynthesis of acyl specific glycerophospholipids in mammalian tissues. Postulation of new pathways. FEBS Lett 170:1–14, 1984.

    Google Scholar 

  130. Nervi AM, Brenner RR, Peluffo R: Effect of arachidonic acid on the microsomal desaturation of linoleic into gamma-linolenic acid and their simultaneous incorporation into the phospholipids. Biochim Biophys Acta 152:539–551, 1968.

    Google Scholar 

  131. Davis JT, Bridges RB, Coniglio JG: Changes in lipid composition of the maturing rat testis. Biochem J 98:342–346, 1966.

    Google Scholar 

  132. Sellner PA, Hazel JR: Incorporation of polyunsaturated fatty acids into lipids of rainbow trout hepatocytes. Am J Physiol 243:R223-R228, 1982.

    Google Scholar 

  133. Robert J, Montaudon D, Hughes P: Incorporation and metabolism of exogenous fatty acids by cultured normal and tumoral glial cells. Biochim Biophys Acta 752:383–395, 1983.

    Google Scholar 

  134. Catala A, Nervi AM, Brenner RR: Separation of a protein factor necessary for the oxidative desaturation of fatty acids in the rat. J Biol Chem 250:7481–7484, 1975.

    Google Scholar 

  135. Jeffcoat R, Dunton AP, James AT: Evidence for the different responses of delta-9-, delta-6-, and delta-5-fatty acyl-CoA desaturases to cytoplasmic proteins. Biochim Biophys Acta 528:28–35, 1978.

    Google Scholar 

  136. Baker RC, Wykle RL, Lockmiller JS, Snyder F: Identification of a soluble protein stimulator of plasmalogen biosynthesis and stearoyl-coenzyme A desaturase. Arch Biochem Biophys 177:299–306, 1976.

    Google Scholar 

  137. Larsson OM, Brimer L: NADH- and NADPH-dependent desaturation of linoleic acid in the extracted microsomal fraction of rat liver, and related effects of catalase and hydrogen peroxide. Biochim Biophys Acta 572:395–403, 1979.

    Google Scholar 

  138. Browse JA, Slack R: Catalase stimulates linoleate desaturase activity in microsomes from developing linseed cotyledons. FEBS Lett 131:111–114, 1981.

    Google Scholar 

  139. Sreekrishna K, Joshi VC: Inhibition of the microsomal stearoyl coenzyme A desaturation by divalent copper and its chelates. Biochim Biophys Acta 619:267–273, 1980.

    Google Scholar 

  140. Holloway PW: Fatty acid desaturation. In P Boyer (ed). The Enzymes. Academic Press, New York, vol 16, 1983, pp 63–83.

    Google Scholar 

  141. Mitchell P, Mitchell R, Moody AJ, West IC, Baum H, Wrigglesworth JM: Chemiosmotic coupling in cytochrome oxidase. FEBS Lett 188:1–7, 1985.

    Google Scholar 

  142. Sies H, Grosskopf M: Oxidation of cytochrome b5 by hydroperoxides in rat liver. Eur J Biochem 57:513–520, 1975.

    Google Scholar 

  143. Grigor'eva VA, Medovar EN: Protein content and ATPase activity in cellular elements of muscle normally and in avitaminosis-E. Fed Proc 24:T85-T89, 1965.

    Google Scholar 

  144. Carey M, Dziwiatkosuski DD: Adenosine triphosphatase and phosphatase activity of muscle homogenates from rabbits on a vitamin E-deficient diet. J Biol Chem 179:119–131, 1949.

    Google Scholar 

  145. Vajanamarhutue C, Wilairat P, Komaratat P: Effects of vitamin E deficiency on the activities of lipid-requiring enzymes in rabbit liver and muscle. J Nutr 109:848–855, 1979.

    Google Scholar 

  146. Patipaporn K, Wilairat P, Komaratat P: Altered property of sarcoplasmic CA-ATPase from vitamin E-deficient dystrophic rabbit is associated with the protein and not the lipid component. Biochem Int 6:335–338, 1983.

    Google Scholar 

  147. Promokhatkaew D, Komaratat P, Wilairat P: Ascorbic acid-Fe2+ treatment mimics effect of vitamin E deficiency on sarcoplasmic Ca-ATPase of rabbit muscle. Biochem Int 10:937–943, 1985.

    Google Scholar 

  148. Albert DH, Coniglio JG: Metabolism of eicosa-11,14-dienoic acid in rat testes. Evidence for a delta-8-desaturase activity. Biochim Biophys Acta 489:390–396, 1977.

    Google Scholar 

  149. Sprecher H, Lee CJ: The absence of 8-desaturase in rat liver: a reevaluation of optional pathways for the metabolism of linoleic and linolenic acids. Biochim Biophys Acta 388:113–125, 1975.

    Google Scholar 

  150. Pugh EL, Kates M: Membrane-bound phospholipid desaturases. Lipids 14:159–165, 1979.

    Google Scholar 

  151. Marx JL: Fixing nitrogen without molybdenum. Science 229:956–957, 1985.

    Google Scholar 

  152. Booth VH, Bradford MP: Tocopherol contents of vegetables and fruits. Br J Nutr 17:575–581, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, J.P. Vitamin E and selenium participation in fatty acid desaturation A proposal for an enzymatic function of these nutrients. Mol Cell Biochem 69, 93–108 (1986). https://doi.org/10.1007/BF00224757

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224757

Keywords

Navigation