Skip to main content
Log in

Analysis of the electroretinogram in toxoplasma retinochorioiditis

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The decision to use therapy in toxoplasma retinochorioiditis depends on the location of the active lesion and the presence of vitreous activity. In eyes with dense vitreous clouding it can be difficult to see whether the macular region is involved or not. In theory the localisation of a lesion can be estimated on the basis of the flash ERG. The standard flash electroretinogram was recorded in 23 patients with inactive toxoplasma retinochorioiditis lesions in the retina. In 17 cases a lesion was present within the central 12° of the visual field, 8 of these had a reduced photopic ERG. In 15 patients lesions were found outside the central 12°, in 8 of whom the scotopic ERG was reduced. We conclude that the ERG can be of use in indicating the scar location in patients with dense vitreous clouding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karpe G. The basis of clinical electroretinography. Acta Ophthalmol Scand 1945; suppl 24: 1–118.

    Google Scholar 

  2. François J. L'électro-rétinographie dans les uvéites. Ophthalmologica 1953; 125 (3): 137–43.

    Google Scholar 

  3. Algvere P. Electroretinographic studies on posterior uveitis. Acta Ophthalmol Scand 1967; 45: 299–313.

    Google Scholar 

  4. Denden A. ERG- und EOG-Untersuchungsergebnisse bei der Toxocara canis retinochorioiditis. Klin Mbl Augenheilk 1974; 165: 617–25.

    Google Scholar 

  5. Hatt M, Niemeyer G. Elektroretinographie bei Morbus Behçet. Graefes Arch Ophthalmol 1976; 198: 113–20.

    Google Scholar 

  6. Müller W, Kleinschmidt R. Zur Interpretation elektroretinographischer Befunde bei Uveitis posterior. Klin Mbl Augenheilk 1985; 186: 79–81.

    Google Scholar 

  7. Martenet AC, Niemeyer G. The electroretinogram as an indicator of severity in uveitis. In: Secchi AG, Fregoa IA, eds. Modern trends in immunology and immunopathology. Milan, Masson: 1989.

    Google Scholar 

  8. Ikeda H, Franchi A, Turner G, Shilling J, Graham E. Electroretinography and electrooculography to localize abnormalities in early-stage inflammatory eye disese. Doc Ophthalmol 1990; 73: 387–94.

    Google Scholar 

  9. Algevere P, Hedin A, Kock E. The electroretinogram and histopathology in experimental uveitis in the pigeon. Acta Ophthalmol Scand 1968; 46: 920–35.

    Google Scholar 

  10. Lawwill T, Wacker W, MacDonald R. The role of electroretinography in evaluating posterior uveitis. Am J Ophthalmol 1972; 74 (6): 1086–93.

    Google Scholar 

  11. Stanford MR, Robbins J, Suleyman S, Dumonde DC. Electroretinographic studies in experimental allergic uveitis. In: Ferraz de Oliviera LN, ed. Ophthalmology today. Amsterdam/New York: Elsevier Science Publishers 1988: 21–26.

    Google Scholar 

  12. Stanford MR, Robbins J. Experimental posterior uveitis, II: Electroretingraphic studies. Br J Ophthalmol 1988; 72: 88–96.

    Google Scholar 

  13. Marmor MF, Arden GF, Nilsson SE and Zrenner E. Standard for clinical electroretinography. Arch Ophthalmol 1989; 107: 816–19. Doc. Ophthalmol 1990; 73(4): 303–11.

    Google Scholar 

  14. Østerberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol 1935; 13 suppl 6: 1–9.

    Google Scholar 

  15. Curcio AC, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurology 1990; 292: 497–523.

    Google Scholar 

  16. Drasdo N, Fowler CW. Non-linear projection of the retinal image in a wide angle schematic eye. Br J Ophthalmol 1974; 58: 709–14.

    Google Scholar 

  17. Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye: An atlas and textbook. Philadelphia: Saunders, 1971.

    Google Scholar 

  18. Buren, JM van. The retinal ganglion cell layer. Springfield: Thomas Publ. 1963: 1–43.

    Google Scholar 

  19. Cooper S, Creed RS, Granit R. A note on the retinal action potential of the human eye. J Physiol (London) 1933; 79: 185–90.

    Google Scholar 

  20. Fry GA, Bartley SH. The relation of stray light in the eye to the retinal action potential. Am J Physiol 1935; 111: 335–40.

    Google Scholar 

  21. Asher H. The electroretingram of the blind spot. J Physiol (London) 1951; 112: 40P.

  22. Wirth A, Zetterström B. Effect of area and intensity on the size and shape of the electroretinogram. Br J Ophthalmol 1954; 38: 257–65.

    Google Scholar 

  23. Armington JC, Tepas DI, Kropfl WJ, Hengst WH. Summation of retinal potentials. J Opt Soc Am 1961; 51 (6): 877–86.

    Google Scholar 

  24. Arden GB, Bankes JLK. Foveal electroretinogram as a clinical test. Br J Ophthalmol 1966; 50: 740.

    Google Scholar 

  25. Brindley GS, Westheimer G. The spatial properties of the human electroretinogram. J Physiol (London) 1965; 179: 518–37.

    Google Scholar 

  26. Aiba TS, Alpern M, Maaseidvaag F. The electroretinogram evoked by the excitation of human foveal cones. J Physiol (London) 1967; 189: 43–62

    Google Scholar 

  27. Bagolini B, Daniele A, Frank M, Ravalico G. An attempt towards a new approach to localized ERG. Doc Ophthalmol 1973; 34: 57–65.

    Google Scholar 

  28. Grounauer PA, Vo Van Toi, Huber CH. ERG by localized sinusoidal stimulation. Doc Ophthalmol Proc Ser 1977; 23: 187–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riemslag, F.C.C., Brinkman, C.J.J., Lunel, H.F.E.V. et al. Analysis of the electroretinogram in toxoplasma retinochorioiditis. Doc Ophthalmol 82, 57–63 (1992). https://doi.org/10.1007/BF00156994

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156994

Key words

Navigation