Skip to main content

Aldehyde Dehydrogenase 2 (ALDH2) and Aging: Is There a Sensible Link?

  • Chapter
  • First Online:
Aldehyde Dehydrogenases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1193))

Abstract

Aging is a complex irreversible biological process associated with increased prevalence of chronic disease and high healthcare burden. Several theories have been proposed for the biology of aging including free radical accumulation, DNA damage, apoptosis, telomere shortening, autophagy failure, and disturbed autonomic response. Aging is also closely associated with progressive deterioration of cardiovascular and neurological functions. Linkage, genome-wide association (GWAS), and next-generation sequencing analysis have confirmed a number of susceptibility loci for aging, in particular, Alzheimer’s disease. Recent evidence from our group and others also revealed a tie between genetic mutation of mitochondrial aldehyde dehydrogenase (ALDH2) and life span as well as cardiovascular aging. ALDH2 represents the single most gene with the greatest number of human genetic polymorphism and is deemed an important enzyme for detoxification of reactive aldehydes. Here, we will briefly review the tie between ALDH2 and cardiovascular aging process. While recent work on ALDH2 research has broadened the pathogenic mechanisms of ALDH2 mutation or deficiency, therapeutic potential targeting ALDH2 in the elderly still remains debatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren J, Sowers JR, Zhang Y (2018) Metabolic stress, autophagy, and cardiovascular aging: from pathophysiology to therapeutics. Trends Endocrinol Metab 29(10):699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451(7179):716–719

    Article  CAS  PubMed  Google Scholar 

  3. Lakatta EG (1993) Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73(2):413–467

    Article  CAS  PubMed  Google Scholar 

  4. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83(2):247–261

    Article  CAS  PubMed  Google Scholar 

  5. Rich MW, Quality of Care C, Heart Failure Society of A (2011) The year in quality of care in heart failure. J Card Fail 17(6):443–450

    Article  Google Scholar 

  6. Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoshi H, Hao W, Fujita Y, Funayama A, Miyauchi Y, Hashimoto K, Miyamoto K, Iwasaki R, Sato Y, Kobayashi T, Miyamoto H, Yoshida S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Kitagawa K, Nakayama KI, Kawamoto T, Sano M, Fukuda K, Ohsawa I, Ohta S, Morioka H, Matsumoto M, Chiba K, Toyama Y, Miyamoto T (2012) Aldehyde-stress resulting from Aldh2 mutation promotes osteoporosis due to impaired osteoblastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 27(9):2015–2023

    Article  CAS  Google Scholar 

  8. Tosto G, Reitz C (2016) Genomics of Alzheimer’s disease: value of high-throughput genomic technologies to dissect its etiology. Mol Cell Probes 30(6):397–403

    Article  CAS  PubMed  Google Scholar 

  9. Barnes PJ (2015) Mechanisms of development of multimorbidity in the elderly. Eur Respir J 45(3):790–806

    Article  CAS  PubMed  Google Scholar 

  10. Hartl FU (2016) Cellular homeostasis and aging. Annu Rev Biochem 85:1–4

    Article  CAS  PubMed  Google Scholar 

  11. Chen CH, Sun L, Mochly-Rosen D (2010) Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc Res 88(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J (2018) ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1alpha deacetylation. Int J Obes (2005) 42(5):1073–1087

    Article  CAS  PubMed  Google Scholar 

  13. Wu B, Yu L, Wang Y, Wang H, Li C, Yin Y, Yang J, Wang Z, Zheng Q, Ma H (2016) Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget 7(3):2175–2188

    PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Ren J (2011) ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 132(1):86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Wang C, Zhou J, Sun A, Hueckstaedt LK, Ge J, Ren J (2017) Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim Biophys Acta Mol basis Dis 1863(8):1919–1932

    Article  CAS  PubMed  Google Scholar 

  16. Gong D, Zhang H, Hu S (2013) Mitochondrial aldehyde dehydrogenase 2 activation and cardioprotection. J Mol Cell Cardiol 55:58–63

    Article  CAS  PubMed  Google Scholar 

  17. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D (2014) Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 94(1):1–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ma C, Yu B, Zhang W, Wang W, Zhang L, Zeng Q (2017) Associations between aldehyde dehydrogenase 2 (ALDH2) rs671 genetic polymorphisms, lifestyles and hypertension risk in Chinese Han people. Sci Rep 7(1):11136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama KI, Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci U S A 102(34):12159–12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebert AD, Kodo K, Liang P, Wu H, Huber BC, Riegler J, Churko J, Lee J, de Almeida P, Lan F, Diecke S, Burridge PW, Gold JD, Mochly-Rosen D, Wu JC (2014) Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci Transl Med 6(255):255ra130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu X, Sun X, Liao H, Dong Z, Zhao J, Zhu H, Wang P, Shen L, Xu L, Ma X, Shen C, Fan F, Wang C, Hu K, Zou Y, Ge J, Ren J, Sun A (2015) Mitochondrial aldehyde dehydrogenase 2 regulates revascularization in chronic ischemia: potential impact on the development of coronary collateral circulation. Arterioscler Thromb Vasc Biol 35(10):2196–2206

    Article  CAS  PubMed  Google Scholar 

  22. Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, Isse T, Kawamoto T, Fan H, Yang P, Akazawa H, Nagai T, Takano H, Ping P, Komuro I, Ge J (2014) Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc 3(5):e000779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhong W, Zhang W, Li Q, Xie G, Sun Q, Sun X, Tan X, Sun X, Jia W, Zhou Z (2015) Pharmacological activation of aldehyde dehydrogenase 2 by Alda-1 reverses alcohol-induced hepatic steatosis and cell death in mice. J Hepatol 62(6):1375–1381

    Article  CAS  PubMed  Google Scholar 

  24. Sawada G, Niida A, Uchi R, Hirata H, Shimamura T, Suzuki Y, Shiraishi Y, Chiba K, Imoto S, Takahashi Y, Iwaya T, Sudo T, Hayashi T, Takai H, Kawasaki Y, Matsukawa T, Eguchi H, Sugimachi K, Tanaka F, Suzuki H, Yamamoto K, Ishii H, Shimizu M, Yamazaki H, Yamazaki M, Tachimori Y, Kajiyama Y, Natsugoe S, Fujita H, Mafune K, Tanaka Y, Kelsell DP, Scott CA, Tsuji S, Yachida S, Shibata T, Sugano S, Doki Y, Akiyama T, Aburatani H, Ogawa S, Miyano S, Mori M, Mimori K (2016) Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology 150(5):1171–1182

    Article  PubMed  Google Scholar 

  25. Zhu Y, Zhang D, Zhou D, Li Z, Li Z, Fang L, Yang M, Shan Z, Li H, Chen J, Zhou X, Ye W, Yu S, Li H, Cai L, Liu C, Zhang J, Wang L, Lai Y, Ruan L, Sun Z, Zhang S, Wang H, Liu Y, Xu Y, Ling J, Xu C, Zhang Y, Lv D, Yuan Z, Zhang J, Zhang Y, Shi Y, Lai M (2017) Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: a multi-stage genome-wide association study. J Cell Mol Med 21(6):1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Ye YL, Wang YN, Liu FF, Liu XX, Hu BL, Zou M, Zhu JH (2015) Aldehyde dehydrogenase 2 genetic variations may increase susceptibility to Parkinson’s disease in Han Chinese population. Neurobiol Aging 36(9):2660.e2669–2660.e2613

    Article  CAS  Google Scholar 

  27. Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, Ren J (2014) Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med 71:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Booth LN, Brunet A (2016) The aging epigenome. Mol Cell 62(5):728–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fontana L, Kennedy BK, Longo VD, Seals D, Melov S (2014) Medical research: treat ageing. Nature 511(7510):405–407

    Article  CAS  PubMed  Google Scholar 

  30. Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18(10):595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bilkei-Gorzo A (2014) Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 142(2):244–257

    Article  CAS  PubMed  Google Scholar 

  33. Quiros PM, Langer T, Lopez-Otin C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16(6):345–359

    Article  CAS  PubMed  Google Scholar 

  34. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science (New York, NY) 350(6265):1208–1213

    Article  CAS  Google Scholar 

  36. Shay JW (2016) Role of telomeres and telomerase in aging and cancer. Cancer Discov 6(6):584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Falandry C, Bonnefoy M, Freyer G, Gilson E (2014) Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol Off J Am Soc Clin Oncol 32(24):2604–2610

    Article  Google Scholar 

  38. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157(4):897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogers LK, Cismowski MJ (2018) Oxidative stress in the lung – the essential paradox. Curr Opin Toxicol 7:37–43

    Article  PubMed  Google Scholar 

  41. Schottker B, Brenner H, Jansen EH, Gardiner J, Peasey A, Kubinova R, Pajak A, Topor-Madry R, Tamosiunas A, Saum KU, Holleczek B, Pikhart H, Bobak M (2015) Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 13:300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escudero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramirez JM, Bernal-Perez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56(3):225–237

    Article  CAS  PubMed  Google Scholar 

  43. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A 109(15):5785–5790

    Article  PubMed  PubMed Central  Google Scholar 

  44. Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    Article  CAS  PubMed  Google Scholar 

  45. Finkel T (2015) The metabolic regulation of aging. Nat Med 21(12):1416–1423

    Article  CAS  PubMed  Google Scholar 

  46. Kim KH, Lee MS (2014) Autophagy – a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337

    Article  CAS  PubMed  Google Scholar 

  47. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123(3):951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  51. Riera CE, Dillin A (2015) Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol 17(3):196–203

    Article  CAS  PubMed  Google Scholar 

  52. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17(1):101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Q, Ceylan-Isik AF, Li J, Ren J (2008) Deficiency of insulin-like growth factor 1 reduces sensitivity to aging-associated cardiomyocyte dysfunction. Rejuvenation Res 11(4):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL, Zhao Y, Tsai KS, Zhu H, Chuang LM, Boeke JD (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146(6):969–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orogo AM, Gustafsson AB (2015) Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res 116(3):489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frankel LB, Lubas M, Lund AH (2017) Emerging connections between RNA and autophagy. Autophagy 13(1):3–23

    Article  CAS  PubMed  Google Scholar 

  58. Morel E, Mehrpour M, Botti J, Dupont N, Hamai A, Nascimbeni AC, Codogno P (2017) Autophagy: a druggable process. Annu Rev Pharmacol Toxicol 57:375–398

    Article  CAS  PubMed  Google Scholar 

  59. Delbridge LMD, Mellor KM, Taylor DJ, Gottlieb RA (2017) Myocardial stress and autophagy: mechanisms and potential therapies. Nat Rev Cardiol 14(7):412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rubinsztein DC, Bento CF, Deretic V (2015) Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 212(7):979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21(18):1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35(11):583–591

    Article  CAS  PubMed  Google Scholar 

  64. Ktistakis NT, Tooze SA (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol 26(8):624–635

    Article  CAS  PubMed  Google Scholar 

  65. Chandra V, Bhagyaraj E, Parkesh R, Gupta P (2016) Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 91(2):429–451

    Article  PubMed  Google Scholar 

  66. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  67. Camici GG, Savarese G, Akhmedov A, Luscher TF (2015) Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J 36(48):3392–3403

    Article  CAS  PubMed  Google Scholar 

  68. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016) Aging and autophagy in the heart. Circ Res 118(10):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakayama H, Nishida K, Otsu K (2016) Macromolecular degradation systems and cardiovascular aging. Circ Res 118(10):1577–1592

    Article  CAS  PubMed  Google Scholar 

  70. Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E, Treiber N, Kawamoto T, Scharffetter-Kochanek K, Munzel T, Burkle A, Bachschmid MM, Daiber A (2008) Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res 80(2):280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J (2011) Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol 106(6):1173–1191

    Article  CAS  PubMed  Google Scholar 

  72. Park JW, Ji YI, Choi YH, Kang MY, Jung E, Cho SY, Cho HY, Kang BK, Joung YS, Kim DH, Park SC, Park J (2009) Candidate gene polymorphisms for diabetes mellitus, cardiovascular disease and cancer are associated with longevity in Koreans. Exp Mol Med 41(11):772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mizuno Y, Hokimoto S, Harada E, Kinoshita K, Nakagawa K, Yoshimura M, Ogawa H, Yasue H (2016) Variant aldehyde dehydrogenase 2 (ALDH2*2) is a risk factor for coronary spasm and ST-segment elevation myocardial infarction. J Am Heart Assoc 5(5):e003247

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mizuno Y, Harada E, Morita S, Kinoshita K, Hayashida M, Shono M, Morikawa Y, Murohara T, Nakayama M, Yoshimura M, Yasue H (2015) East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 131(19):1665–1673

    Article  CAS  PubMed  Google Scholar 

  75. Dassanayaka S, Zheng Y, Gibb AA, Cummins TD, McNally LA, Brittian KR, Jagatheesan G, Audam TN, Long BW, Brainard RE, Jones SP, Hill BG (2018) Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biol 17:440–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gan L, Cookson MR, Petrucelli L, La Spada AR (2018) Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21(10):1300–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. D’Souza Y, Elharram A, Soon-Shiong R, Andrew RD, Bennett BM (2015) Characterization of Aldh2 (−/−) mice as an age-related model of cognitive impairment and Alzheimer’s disease. Mol Brain 8:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S (2008) Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci Off J Soc Neurosci 28(24):6239–6249

    Article  CAS  Google Scholar 

  80. Kim JM, Stewart R, Shin IS, Jung JS, Yoon JS (2004) Assessment of association between mitochondrial aldehyde dehydrogenase polymorphism and Alzheimer’s disease in an older Korean population. Neurobiol Aging 25(3):295–301

    Article  CAS  PubMed  Google Scholar 

  81. Hou G, Chen L, Liu G, Li L, Yang Y, Yan HX, Zhang HL, Tang J, Yang YC, Lin X, Chen X, Luo GJ, Zhu Y, Tang S, Zhang J, Liu H, Gu Q, Zhao LH, Li Y, Liu L, Zhou W, Wang H (2017) Aldehyde dehydrogenase-2 (ALDH2) opposes hepatocellular carcinoma progression by regulating AMP-activated protein kinase signaling in mice. Hepatology (Baltimore, Md) 65(5):1628–1644

    Article  CAS  Google Scholar 

  82. Ishioka K, Masaoka H, Ito H, Oze I, Ito S, Tajika M, Shimizu Y, Niwa Y, Nakamura S, Matsuo K (2018) Association between ALDH2 and ADH1B polymorphisms, alcohol drinking and gastric cancer: a replication and mediation analysis. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc 21:936–945

    CAS  Google Scholar 

  83. Jin S, Chen J, Chen L, Histen G, Lin Z, Gross S, Hixon J, Chen Y, Kung C, Chen Y, Fu Y, Lu Y, Lin H, Cai X, Yang H, Cairns RA, Dorsch M, Su SM, Biller S, Mak TW, Cang Y (2015) ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis. Proc Natl Acad Sci U S A 112(29):9088–9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6(8):647–658

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang C, Fan F, Cao Q, Shen C, Zhu H, Wang P, Zhao X, Sun X, Dong Z, Ma X, Liu X, Han S, Wu C, Zou Y, Hu K, Ge J, Sun A (2016) Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J Mol Med (Berlin, Germany) 94(11):1229–1240

    Article  CAS  Google Scholar 

  86. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S (2016) Vitamin D, calcium homeostasis and aging. Bone Res 4:16041

    Article  PubMed  PubMed Central  Google Scholar 

  87. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW Jr, Kemper AR, Kubik M, Landefeld CS, Mangione CM, Phipps MG, Pignone M, Silverstein M, Simon MA, Tseng CW, Wong JB (2018) Screening for osteoporosis to prevent fractures: US preventive services task force recommendation statement. JAMA 319(24):2521–2531

    Article  PubMed  Google Scholar 

  88. Yamaguchi J, Hasegawa Y, Kawasaki M, Masui T, Kanoh T, Ishiguro N, Hamajima N (2006) ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos Int 17(6):908–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC91749128. We wish to express our apology for those authors whose important work was unable to be included due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, N.N., Ren, J. (2019). Aldehyde Dehydrogenase 2 (ALDH2) and Aging: Is There a Sensible Link?. In: Ren, J., Zhang, Y., Ge, J. (eds) Aldehyde Dehydrogenases. Advances in Experimental Medicine and Biology, vol 1193. Springer, Singapore. https://doi.org/10.1007/978-981-13-6260-6_15

Download citation

Publish with us

Policies and ethics