Skip to main content

The Use of Biomarkers for Prediction and Prevention of Alzheimer’s and Parkinson’s Diseases

  • Chapter
  • First Online:
Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 2))

Abstract

Among the diverse challenges facing clinicians during the last century, is the staggering increase in the proportion of elderly members, which is directly linked to the prevalence of neurodegenerative diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). AD and PD are considered disorders of multifactorial origin, inevitably progressive and having a long preclinical period. At present, clinical diagnosis of AD and PD is based on a constellation of symptoms and manifestations, although the disease originated several years earlier. Therefore, the availability of biological markers or biomarkers (BMs) for early disease diagnosis will impact the management of AD and PD in several dimensions: (a) help to capture high-risk individuals before symptoms develop, a stage where prevention efforts might be expected to have their greatest impact; (b) provide a measure of disease progression that can be evaluated objectively, while clinical measures are much less accurate; (c) help to discriminate between true AD or PD and other causes presenting with a similar clinical syndrome; (d) delineate pathophysiological processes responsible for the disease; (e) determine the clinical efficacy of novel, disease-modifying (neuroprotective) strategies. In the long run the availability of reliable BMs will significantly advance the research and therapeutics of these neurodegenerative diseases. However, at present, the available BMs are of limited value in all these respects. There is an urgent need to further explore this field in order to have validated BMs on hand once neuroprotective interventions become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A-beta:

Amyloid-beta

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

apoE:

Apolipoprotein E

APP:

Beta amyloid precursor protein

BM:

Biomarker

CDR:

Clinical dementia rating scale

Cho:

Choline

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Dopamine

DAT:

DA transporter

DLB:

Dementia with Lewy bodies

DSM:

Diagnostic and statistical manual of mental disorders

FDG-PET:

2-Fluoro-2-deoxy-D-glucose PET

EEG:

Electroencephalogram

EOAD:

Early onset Alzheimer’s disease

fMRI:

Functional magnetic resonance

FTD:

Frontotemporal dementia

HFE:

Hemochromatosis gene

ICD:

International classification of diseases

iTRAQ:

Isobaric Tagging for Relative and Absolute protein Quantification

LC:

Locus coeruleus-subcoeruleus complex

LLD:

Late life dementia

LOAD:

Late onset AD

LRRK2:

Leucine-rich repeat kinase 2

MALDI TOF/TOF:

Matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer

MAPT:

Microtubule-associated protein tau

MCI:

Mild cognitive impairment

MRI:

Magnetic resonance

MSA:

Multiple system atrophy

NAA:

N-acetyl aspartate

NAA/Cr:

N-acetyl aspartate/creatine

NFT:

Neurofibrillary tangle

PD:

Parkinson’s disease

PET:

Photon emission tomography

PIB-PET:

Pittsburgh compound B PET

PPA:

Primary progressive aphasia

PSP:

Progressive supranuclear palsy

PTGD:

Prostaglandin D synthase

REM:

Rapid eye movements

RPH:

Raphe nuclei caudal

SN:

Substantia nigra

SPECT:

Single photon emission computerized tomography

STX1:

Syntaxin-1

SYN1,2:

Synapsin 1,2

SYT1:

Synaptotagmin-1

TCS:

Transcranial sonography

TH:

Tyrosyne-hydroxylase

UCH-L1:

Ubiquitin c-terminal hydrolase L1 gene

UPDRS:

Unified Parkinson Disease Rating Scale

UPS:

Ubiquitin-proteasome system

UPSIT:

University of Pennsylvania Smell Identification Test

VaD:

Vascular dementia

VMAT:

Vesicle monoamine transporter

References

  1. Weiner WJ (2005) A differential diagnosis of Parkinsonism. Rev Neurol Dis 2:124–131

    PubMed  Google Scholar 

  2. Poewe W, Wenning G (2002) The differential diagnosis of Parkinson’s disease. Eur J Neurol 9(Suppl 3):23–30

    Article  PubMed  Google Scholar 

  3. Beach TG, Monsell SE, Phillips LE, Kukull W (2012) Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol 71:266–273

    Article  PubMed  Google Scholar 

  4. Hulette C, Nochlin D, Mckeel D, Morris JC, Mirra SS, Sumi SM, Heyman A (1997) Clinical-neuropathologic findings in multi-infarct dementia: a report of six autopsied cases. Neurology 48:668–672

    Article  PubMed  CAS  Google Scholar 

  5. Hulka BS, Wilcosky T (1988) Biological markers in epidemiologic research. Arch Environ Health 43:83–89

    Article  PubMed  CAS  Google Scholar 

  6. Naylor S (2003) Biomarkers: current perspectives and future prospects. Expert Rev Mol Diagn 3:525–529

    Article  PubMed  Google Scholar 

  7. Masterman DL, Mendez MF, Fairbanks LA, Cummings JL (1997) Sensitivity, specificity, and positive predictive value of technetium 99-HMPAO SPECT in discriminating Alzheimer’s disease from other dementias. J Geriatr Psychiatry Neurol 10:15–21

    PubMed  CAS  Google Scholar 

  8. Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Dartigues JF, Lobo A, Martinez-Lage J, Soininen H, Hofman A (2000) Incidence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54:S10–S15

    PubMed  CAS  Google Scholar 

  9. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, Copeland JR, Jagger C, Martinez-Lage J, Soininen H, Hofman A (2000) Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54:S4–S9

    Article  PubMed  CAS  Google Scholar 

  10. Graham JE, Rockwood K, Beattie BL, Eastwood R, Gauthier S, Tuokko H, McDowell I (1997) Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 349:1793–1796

    Article  PubMed  CAS  Google Scholar 

  11. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A (2000) Age-specific incidence rates of Alzheimer’s disease: the Baltimore longitudinal study of aging. Neurology 54:2072–2077

    Article  PubMed  CAS  Google Scholar 

  12. Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  PubMed  CAS  Google Scholar 

  13. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  14. Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  Google Scholar 

  15. Korczyn AD (2011) Commentary on “Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease”. Alzheimers Dement 7:333–334

    Article  PubMed  Google Scholar 

  16. Lyketsos CG, Szekely CA, Mielke MM, Rosenberg PB, Zandi PP (2008) Developing new treatments for Alzheimer’s disease: the who, what, when, and how of biomarker-guided therapies. Int Psychogeriatr 20:871–889

    Article  PubMed  Google Scholar 

  17. Sunderland T, Hampel H, Takeda M, Putnam KT, Cohen RM (2006) Biomarkers in the diagnosis of Alzheimer’s disease: are we ready? J Geriatr Psychiatry Neurol 19:172–179

    Article  PubMed  Google Scholar 

  18. Korczyn AD (2002) Mixed dementia–the most common cause of dementia. Ann N Y Acad Sci 977:129–134

    Article  PubMed  Google Scholar 

  19. Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, Blennow K (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58:373–379

    Article  PubMed  CAS  Google Scholar 

  20. Hanninen T, Hallikainen M, Tuomainen S, Vanhanen M, Soininen H (2002) Prevalence of mild cognitive impairment: a population-based study in elderly subjects. Acta Neurol Scand 106:148–154

    Article  PubMed  CAS  Google Scholar 

  21. Middleton LE, Grinberg LT, Miller B, Kawas C, Yaffe K (2011) Neuropathologic features associated with Alzheimer disease diagnosis: age matters. Neurology 77:1737–1744

    Article  PubMed  CAS  Google Scholar 

  22. Grinberg LT, Rueb U, Heinsen H (2011) Brainstem: neglected locus in neurodegenerative diseases. Front Neurol 2:42

    Article  PubMed  CAS  Google Scholar 

  23. Jack CR Jr, Petersen RC, Xu Y, O’brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55:484–489

    Article  PubMed  Google Scholar 

  24. Henneman WJ, Sluimer JD, Barnes J, Van Der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999–1007

    Article  PubMed  CAS  Google Scholar 

  25. Gasser T (2003) Overview of the genetics of parkinsonism. Adv Neurol 91:143–152

    PubMed  CAS  Google Scholar 

  26. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778

    Article  PubMed  CAS  Google Scholar 

  27. Mulder C, Scheltens P, Visser JJ, Van Kamp GJ, Schutgens RB (2000) Genetic and biochemical markers for Alzheimer’s disease: recent developments. Ann Clin Biochem 37(Pt 5):593–607

    Article  PubMed  CAS  Google Scholar 

  28. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90:8098–8102

    Article  PubMed  CAS  Google Scholar 

  29. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  PubMed  CAS  Google Scholar 

  30. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, Huentelman MJ, Welsh-Bohmer KA, Reiman EM (2010) A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 10:375–384

    Article  PubMed  CAS  Google Scholar 

  31. Grossman I, Lutz MW, Crenshaw DG, Saunders AM, Burns DK, Roses AD (2010) Alzheimer’s disease: diagnostics, prognostics and the road to prevention. EPMA J 1:293–303

    Article  PubMed  Google Scholar 

  32. Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 98:3334–3339

    Article  PubMed  CAS  Google Scholar 

  33. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A 101:284–289

    Article  PubMed  CAS  Google Scholar 

  34. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456

    Article  PubMed  CAS  Google Scholar 

  35. Lindsten K, Menendez-Benito V, Masucci MG, Dantuma NP (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21:897–902

    Article  PubMed  CAS  Google Scholar 

  36. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    Article  PubMed  CAS  Google Scholar 

  37. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  PubMed  CAS  Google Scholar 

  38. Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59:1093–1102

    Article  PubMed  CAS  Google Scholar 

  39. Korczyn AD (2008) The amyloid cascade hypothesis. Alzheimers Dement 4:176–178

    Article  PubMed  CAS  Google Scholar 

  40. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  41. Guerreiro RJ, Hardy J (2011) Alzheimer’s disease genetics: lessons to improve disease modelling. Biochem Soc Trans 39:910–916

    Article  PubMed  CAS  Google Scholar 

  42. Bertram L (2011) Alzheimer’s genetics in the GWAS era: a continuing story of ‘replications and refutations’. Curr Neurol Neurosci Rep 11:246–253

    Article  PubMed  Google Scholar 

  43. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281

    Article  PubMed  CAS  Google Scholar 

  44. Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  PubMed  CAS  Google Scholar 

  45. Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  PubMed  CAS  Google Scholar 

  46. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  PubMed  CAS  Google Scholar 

  47. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  PubMed  CAS  Google Scholar 

  48. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    Article  PubMed  CAS  Google Scholar 

  49. Jack CR Jr (2011) Alliance for aging research AD biomarkers work group: structural MRI. Neurobiol Aging 32(Suppl 1):S48–S57

    Article  PubMed  Google Scholar 

  50. Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, Mckeel D, Morris JC, Miller MI (2000) Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology 55:1636–1643

    Article  PubMed  CAS  Google Scholar 

  51. Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo-Morrell L (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22:747–754

    Article  PubMed  CAS  Google Scholar 

  52. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  53. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  54. Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ, Macdonald K, Schuff N, Fox NC, Ourselin S; Alzheimer's Disease Neuroimaging Initiative (2010) Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. Neuroimage 51:1345–1359

    Article  Google Scholar 

  55. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184:101–122

    Article  PubMed  CAS  Google Scholar 

  56. Dekosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155

    Article  PubMed  CAS  Google Scholar 

  57. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406

    Article  PubMed  CAS  Google Scholar 

  58. Werner P, Korczyn AD (2008) Mild cognitive impairment: conceptual, assessment, ethical, and social issues. Clin Interv Aging 3:413–420

    PubMed  Google Scholar 

  59. Resnick SM, Goldszal AF, Davatzikos C, Golski S, Kraut MA, Metter EJ, Bryan N, Zonderman AB (2000) One-year age changes in MRI brain volumes in older adults. Cereb Cortex 10:464–472

    Article  PubMed  CAS  Google Scholar 

  60. Sullivan EV, Pfefferbaum A, Adalsteinsson E, Swan GE, Carmelli D (2002) Differential rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. Cereb Cortex 12:438–445

    Article  PubMed  CAS  Google Scholar 

  61. Chetelat G, Baron JC (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541

    Article  PubMed  Google Scholar 

  62. Imbimbo BP (2009) Why did tarenflurbil fail in Alzheimer’s disease? J Alzheimers Dis 17:757–760

    PubMed  CAS  Google Scholar 

  63. Musiek ES, Chen Y, Korczykowski M, Saboury B, Martinez PM, Reddin JS, Alavi A, Kimberg DY, Wolk DA, Julin P, Newberg AB, Arnold SE, Detre JA (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 8:51–59

    Article  PubMed  Google Scholar 

  64. Connor DM, Benveniste H, Dilmanian FA, Kritzer MF, Miller LM, Zhong Z (2009) Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage 46:908–914

    Article  PubMed  Google Scholar 

  65. Borthakur A, Wheaton AJ, Gougoutas AJ, Akella SV, Regatte RR, Charagundla SR, Reddy R (2004) In vivo measurement of T1rho dispersion in the human brain at 1.5 tesla. J Magn Reson Imaging 19:403–409

    Article  PubMed  Google Scholar 

  66. Klunk WE, Panchalingam K, Moossy J, Mcclure RJ, Pettegrew JW (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42:1578–1585

    Article  PubMed  CAS  Google Scholar 

  67. Kwo-on-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ (1994) Brain N-acetyl-L-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 667:167–174

    Article  PubMed  CAS  Google Scholar 

  68. Jessen F, Block W, Traber F, Keller E, Flacke S, Papassotiropoulos A, Lamerichs R, Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology 55:684–688

    Article  PubMed  CAS  Google Scholar 

  69. Schuff N, Capizzano AA, Du AT, Amend DL, O’neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58:928–935

    Article  PubMed  CAS  Google Scholar 

  70. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217

    Article  PubMed  CAS  Google Scholar 

  71. Leinonen V, Alafuzoff I, Aalto S, Suotunen T, Savolainen S, Nagren K, Tapiola T, Pirttilä T, Rinne J, Jääskeläinen JE, Soininen H, Rinne JO (2008) Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch Neurol 65:1304–1309

    Article  PubMed  Google Scholar 

  72. Valenzuela MJ, Sachdev PS, Wen W, Shnier R, Brodaty H, Gillies D (2000) Dual voxel proton magnetic resonance spectroscopy in the healthy elderly: subcortical-frontal axonal N-acetylaspartate levels are correlated with fluid cognitive abilities independent of structural brain changes. Neuroimage 12:747–756

    Article  PubMed  CAS  Google Scholar 

  73. Mackay S, Ezekiel F, Di Sclafani V, Meyerhoff DJ, Gerson J, Norman D, Fein G, Weiner MW (1996) Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology 198:537–545

    PubMed  CAS  Google Scholar 

  74. Vemuri P, Jones DT, Jack CR Jr (2012) Resting state functional MRI in Alzheimer’s disease. Alzheimers Res Ther 4:2

    Article  PubMed  Google Scholar 

  75. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, Decarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130:2616–2635

    Article  PubMed  Google Scholar 

  76. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120–2127

    Article  PubMed  CAS  Google Scholar 

  77. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    Article  PubMed  CAS  Google Scholar 

  78. Jagust W (2004) Molecular neuroimaging in Alzheimer’s disease. NeuroRx 1:206–212

    Article  PubMed  Google Scholar 

  79. Johnson KA, Holman BL, Rosen TJ, Nagel JS, English RJ, Growdon JH (1990) Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer’s disease. Arch Intern Med 150:752–756

    Article  PubMed  CAS  Google Scholar 

  80. Eberling JL, Jagust WJ, Reed BR, Baker MG (1992) Reduced temporal lobe blood flow in Alzheimer’s disease. Neurobiol Aging 13:483–491

    Article  PubMed  CAS  Google Scholar 

  81. Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS (1998) Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 50:1563–1571

    Article  PubMed  CAS  Google Scholar 

  82. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zündorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schröder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–316

    Article  PubMed  CAS  Google Scholar 

  83. Jagust W, Thisted R, Devous MD Sr, Van Heertum R, Mayberg H, Jobst K, Smith AD, Borys N (2001) SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology 56:950–956

    Article  PubMed  CAS  Google Scholar 

  84. Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, Fox NC, Rossor MN (2006) Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol 60:145–147

    Article  PubMed  Google Scholar 

  85. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Långström B, Nordberg A (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129:2856–2866

    Article  PubMed  Google Scholar 

  86. Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajärvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67:1575–1580

    Article  PubMed  CAS  Google Scholar 

  87. Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, Krautkramer MJ, Kung HF, Skovronsky DM, Hefti F, Clark CM (2012) Correlation of amyloid PET ligand florbetapir F 18 binding with Abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord 26:8–16

    Article  PubMed  CAS  Google Scholar 

  88. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74:201–209

    Article  PubMed  Google Scholar 

  89. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  90. Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1:213–225

    Article  PubMed  Google Scholar 

  91. Blennow K, Vanmechelen E, Hampel H (2001) CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol Neurobiol 24:87–97

    Article  PubMed  CAS  Google Scholar 

  92. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, Morris JC, McKeel DW Jr, Farlow M, Weitlauf SL, Quinn J, Kaye J, Knopman D, Arai H, Doody RS, DeCarli C, Leight S, Lee VM, Trojanowski JQ (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60:1696–1702

    Article  PubMed  Google Scholar 

  93. Arai H, Nakagawa T, Kosaka Y, Higuchi M, Matsui T, Okamura N, Tashiro M, Sasaki H (1997) Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients. Alzheimer’s Res 3:211–213

    Google Scholar 

  94. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO, Freund-Levi Y, Tsolaki M, Minthon L, Wallin AK, Hampel H, Bürger K, Pirttila T, Soininen H, Rikkert MO, Verbeek MM, Spiru L, Blennow K (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8:619–627

    Article  PubMed  Google Scholar 

  95. Boban M, Grbic K, Mladinov M, Hof PR, Sussmair C, Ackl N, Stanic G, Bader B, Danek A, Simić G (2008) Cerebrospinal fluid markers in differential diagnosis of Alzheimer’s disease and vascular dementia. Coll Antropol 32(Suppl 1):31–36

    PubMed  CAS  Google Scholar 

  96. Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R, Moeller HJ, Rapoport SI, Davies P (2001) Tracking of Alzheimer’s disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann Neurol 49:545–546

    Article  PubMed  CAS  Google Scholar 

  97. Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R, Hofmann-Kiefer K, McCulloch C, Ptok U, Heun R, Andreasen N, DeBernardis J, Kerkman D, Moeller H, Davies P, Hampel H (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59:627–629

    Article  PubMed  CAS  Google Scholar 

  98. Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H (1999) Improved discrimination of AD patients using beta-amyloid(1–42) and tau levels in CSF. Neurology 52:1555–1562

    Article  PubMed  CAS  Google Scholar 

  99. Samuels SC, Silverman JM, Marin DB, Peskind ER, Younki SG, Greenberg DA, Schnur E, Santoro J, Davis KL (1999) CSF beta-amyloid, cognition, and APOE genotype in Alzheimer’s disease. Neurology 52:547–551

    Article  PubMed  CAS  Google Scholar 

  100. Tapiola T, Pirttila T, Mikkonen M, Mehta PD, Alafuzoff I, Koivisto K, Soininen H (2000) Three-year follow-up of cerebrospinal fluid tau, beta-amyloid 42 and 40 concentrations in Alzheimer’s disease. Neurosci Lett 280:119–122

    Article  PubMed  CAS  Google Scholar 

  101. Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N, Basun H, Wahlund LO, Werle E, Jauss M, Beyreuther K, Lannfelt L, Hartmann T (1999) Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Ann Neurol 45:504–511

    Article  PubMed  CAS  Google Scholar 

  102. Van Everbroeck B, Green AJ, Pals P, Martin JJ, Cras P (1999) Decreased levels of amyloid-beta 1–42 in cerebrospinal fluid of Creutzfeldt-Jakob disease patients. J Alzheimers Dis 1:419–424

    PubMed  Google Scholar 

  103. Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schroter A, Ratzka P, Cepek L, Zerr I, Steinacker P, Windl O, Kornhuber J, Kretzschmar HA, Poser S, Wiltfang J (2000) Decreased beta-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 54:1099–1102

    Article  PubMed  CAS  Google Scholar 

  104. Kanemaru K, Kameda N, Yamanouchi H (2000) Decreased CSF amyloid beta42 and normal tau levels in dementia with Lewy bodies. Neurology 54:1875–1876

    Article  PubMed  CAS  Google Scholar 

  105. Crystal HA, Davies P (2008) Toward a plasma marker for Alzheimer disease: some progress, but still a long way to go. Neurology 70:586–587

    Article  PubMed  Google Scholar 

  106. Ringman JM, Younkin SG, Pratico D, Seltzer W, Cole GM, Geschwind DH, Rodriguez-Agudelo Y, Schaffer B, Fein J, Sokolow S, Rosario ER, Gylys KH, Varpetian A, Medina LD, Cummings JL (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71:85–92

    Article  PubMed  CAS  Google Scholar 

  107. Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E (2011) Cerebrospinal fluid biomarkers for Alzheimer’s disease: the present and the future. Neurodegener Dis 8:413–420

    Article  PubMed  CAS  Google Scholar 

  108. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    Article  PubMed  CAS  Google Scholar 

  109. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F, Tabrizi SJ, Banner S, Shaw CE, Foy C, Poppe M, Archer N, Hamilton G, Powell J, Brown RG, Sham P, Ward M, Lovestone S (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050

    Article  PubMed  CAS  Google Scholar 

  110. Montine TJ, Beal MF, Cudkowicz ME, O’donnell H, Margolin RA, Mcfarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52:562–565

    Article  PubMed  CAS  Google Scholar 

  111. Irizarry MC, Hyman BT (2003) Brain isoprostanes: a marker of lipid peroxidation and oxidative stress in AD. Neurology 61:436–437

    Article  PubMed  Google Scholar 

  112. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141B:261–268

    Article  PubMed  Google Scholar 

  113. Burczynski ME, Dorner AJ (2006) Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 7:187–202

    Article  PubMed  CAS  Google Scholar 

  114. Fehlbaum-Beurdeley P, Jarrige-Le Prado AC, Pallares D, Carriere J, Guihal C, Soucaille C, Rouet F, Drouin D, Sol O, Jordan H, Wu D, Lei L, Einstein R, Schweighoffer F, Bracco L (2010) Toward an Alzheimer’s disease diagnosis via high-resolution blood gene expression. Alzheimers Dement 6:25–38

    Article  PubMed  CAS  Google Scholar 

  115. Rye PD, Booij BB, Grave G, Lindahl T, Kristiansen L, Andersen HM, Horndalsveen PO, Nygaard HA, Naik M, Hoprekstad D, Wetterberg P, Nilsson C, Aarsland D, Sharma P, Lönneborg A (2011) A novel blood test for the early detection of Alzheimer’s disease. J Alzheimers Dis 23:121–129

    PubMed  CAS  Google Scholar 

  116. Rosner S, Giladi N, Orr-Urtreger A (2008) Advances in the genetics of Parkinson’s disease. Acta Pharmacol Sin 29:21–34

    Article  PubMed  CAS  Google Scholar 

  117. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  118. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

    Article  PubMed  Google Scholar 

  119. Korczyn AD, Gurevich T (2010) Parkinson’s disease: before the motor symptoms and beyond. J Neurol Sci 289:2–6

    Article  PubMed  Google Scholar 

  120. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    Article  PubMed  CAS  Google Scholar 

  121. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  122. Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E, Jenner P, Le Novère N, Obeso JA, Schwarzschild MA, Spampinato U, Davidai G (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    Article  PubMed  CAS  Google Scholar 

  123. Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596

    Article  PubMed  Google Scholar 

  124. Braak H, Del Tredici K, Rub U, De Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  125. Braak H, Muller CM, Rub U, Ackermann H, Bratzke H, De Vos RA, Del Tredici K (2006) Pathology associated with sporadic Parkinson’s disease–where does it end? J Neural Transm Suppl 70:89–97

    Article  PubMed  Google Scholar 

  126. Bloch A, Probst A, Bissig H, Adams H, Tolnay M (2006) Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 32:284–295

    Article  PubMed  CAS  Google Scholar 

  127. Olanow CW, Obeso JA (2012) The significance of defining preclinical or prodromal Parkinson’s disease. Mov Disord 27:666–669

    Article  PubMed  Google Scholar 

  128. Fahn S, Elton R, Committee UD (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden C, Calne DB, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan Health Care Information, Florham Park, pp 153–163

    Google Scholar 

  129. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  130. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    Article  PubMed  Google Scholar 

  131. Vendette M, Gagnon JF, Decary A, Massicotte-Marquez J, Postuma RB, Doyon J, Panisset M, Montplaisir J (2007) REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology 69:1843–1849

    Article  PubMed  CAS  Google Scholar 

  132. Postuma RB, Gagnon JF, Vendette M, Charland K, Montplaisir J (2008) REM sleep behaviour disorder in Parkinson’s disease is associated with specific motor features. J Neurol Neurosurg Psychiatry 79:1117–1121

    Article  PubMed  CAS  Google Scholar 

  133. Burn DJ (2002) Beyond the iron mask: towards better recognition and treatment of depression associated with Parkinson’s disease. Mov Disord 17:445–454

    Article  PubMed  Google Scholar 

  134. Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128:1314–1322

    Article  PubMed  Google Scholar 

  135. Mckinnon JH, Demaerschalk BM, Caviness JN, Wellik KE, Adler CH, Wingerchuk DM (2007) Sniffing out Parkinson disease: can olfactory testing differentiate parkinsonian disorders? Neurologist 13:382–385

    Article  PubMed  Google Scholar 

  136. Hudry J, Thobois S, Broussolle E, Adeleine P, Royet JP (2003) Evidence for deficiencies in perceptual and semantic olfactory processes in Parkinson’s disease. Chem Senses 28:537–543

    Article  PubMed  Google Scholar 

  137. Montgomery EB Jr, Koller WC, Lamantia TJ, Newman MC, Swanson-Hyland E, Kaszniak AW, Lyons K (2000) Early detection of probable idiopathic Parkinson’s disease: I. Development of a diagnostic test battery. Mov Disord 15:467–473

    Article  PubMed  Google Scholar 

  138. Montgomery EB Jr, Lyons K, Koller WC (2000) Early detection of probable idiopathic Parkinson’s disease: II. A prospective application of a diagnostic test battery. Mov Disord 15:474–478

    Article  PubMed  Google Scholar 

  139. Troster AI (2008) Neuropsychological characteristics of dementia with Lewy bodies and Parkinson’s disease with dementia: differentiation, early detection, and implications for “mild cognitive impairment” and biomarkers. Neuropsychol Rev 18:103–119

    Article  PubMed  Google Scholar 

  140. Barone P, Aarsland D, Burn D, Emre M, Kulisevsky J, Weintraub D (2011) Cognitive impairment in nondemented Parkinson’s disease. Mov Disord 26:2483–2495

    Article  PubMed  Google Scholar 

  141. Poletti M, Emre M, Bonuccelli U (2011) Mild cognitive impairment and cognitive reserve in Parkinson’s disease. Parkinsonism Relat Disord 17:579–586

    Article  PubMed  Google Scholar 

  142. Korczyn AD (2011) Comment: should we diagnose MCI in Parkinson disease? J Neural Transm 118:1177

    Article  PubMed  Google Scholar 

  143. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707, quiz 1837

    Article  PubMed  Google Scholar 

  144. Korczyn AD (1990) Autonomic nervous system disturbances in Parkinson’s disease. Adv Neurol 53:463–468

    PubMed  CAS  Google Scholar 

  145. Wolters E, Braak H (2006) Parkinson’s disease: premotor clinico-pathological correlations. J Neural Transm Suppl 70:309–319

    Article  PubMed  Google Scholar 

  146. Sommer C, Lauria G (2007) Skin biopsy in the management of peripheral neuropathy. Lancet Neurol 6:632–642

    Article  PubMed  Google Scholar 

  147. Rossi A, Giovenali P, Benvenuti M, Di Iorio W, Calabresi P (2007) Skin biopsy: a new diagnostic tool for autonomic dysfunctions in Parkinson’s disease? Lancet Neurol 6:848–849

    Article  PubMed  Google Scholar 

  148. Leroux P-D (1880) Contribution à l’Étude des Causes de la Paralysie Agitante. (in French). Thèse de Paris, Imprimeur de la Faculté de Médecine

    Google Scholar 

  149. Gowers WR (1900) A manual of diseases of the nervous system. Blakiston, Philadelphia

    Google Scholar 

  150. Wider C, Foroud T, Wszolek ZK (2010) Clinical implications of gene discovery in Parkinson’s disease and parkinsonism. Mov Disord 25(Suppl 1):S15–S20

    Article  PubMed  Google Scholar 

  151. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  152. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  153. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  154. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  155. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Dürr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171

    Article  PubMed  CAS  Google Scholar 

  156. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  157. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395: 451–452

    Article  PubMed  CAS  Google Scholar 

  158. Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD (1990) Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 161:153–160

    Article  PubMed  CAS  Google Scholar 

  159. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977

    Article  PubMed  CAS  Google Scholar 

  160. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354:424–425

    Article  PubMed  CAS  Google Scholar 

  161. Bonifati V (2011) Autosomal recessive parkinsonism. Parkinsonism Relat Disord 18(Suppl 1):S4–S6

    Google Scholar 

  162. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  163. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  PubMed  CAS  Google Scholar 

  164. Bonifati V, Rizzu P, Van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  PubMed  CAS  Google Scholar 

  165. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  166. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  167. Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252

    Article  PubMed  CAS  Google Scholar 

  168. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  PubMed  CAS  Google Scholar 

  169. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42:781–785

    Article  PubMed  CAS  Google Scholar 

  170. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307

    Article  PubMed  CAS  Google Scholar 

  171. Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649

    Article  PubMed  CAS  Google Scholar 

  172. Gan-Or Z, Bar-Shira A, Dahary D, Mirelman A, Kedmi M, Gurevich T, Giladi N, Orr-Urtreger A (2012) Association of sequence alterations in the putative promoter of RAB7L1 with a reduced parkinson disease risk. Arch Neurol 69:105–110

    Article  PubMed  Google Scholar 

  173. Brooks DJ, Pavese N (2012) Imaging biomarkers in Parkinson’s disease. Prog Neurobiol 95:614–628

    Article  CAS  Google Scholar 

  174. Brooks DJ (2008) Technology insight: imaging neurodegeneration in Parkinson’s disease. Nat Clin Pract Neurol 4:267–277

    Article  PubMed  CAS  Google Scholar 

  175. Eckert T, Tang C, Eidelberg D (2007) Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol 6:926–932

    Article  PubMed  Google Scholar 

  176. Group PS (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287:1653–1661

    Article  Google Scholar 

  177. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, Lang AE, Rascol O, Ribeiro MJ, Remy P, Poewe WH, Hauser RA, Brooks DJ; REAL-PET Study Group (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study group. Ann Neurol 54:93–101

    Article  PubMed  CAS  Google Scholar 

  178. Goldstein DS, Holmes C, Bentho O, Sato T, Moak J, Sharabi Y, Imrich R, Conant S, Eldadah BA (2008) Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord 14:600–607

    Article  PubMed  Google Scholar 

  179. Berg D (2008) Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis 5:133–136

    Article  PubMed  Google Scholar 

  180. Nicoletti G, Lodi R, Condino F, Tonon C, Fera F, Malucelli E, Manners D, Zappia M, Morgante L, Barone P, Barbiroli B, Quattrone A (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129:2679–2687

    Article  PubMed  Google Scholar 

  181. Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, Chi JG, Kim YB, Jeon BS, Cho ZH (2012) Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 71:267–277

    Article  PubMed  Google Scholar 

  182. Emir UE, Tuite PJ, Oz G (2012) Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One 7:e30918

    Article  PubMed  CAS  Google Scholar 

  183. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  184. Gerlach M, Double KL, Youdim MB, Riederer P (2006) Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl 70:133–142

    Article  PubMed  CAS  Google Scholar 

  185. Koeppen AH (1995) The history of iron in the brain. J Neurol Sci 134(Suppl):1–9

    Article  PubMed  CAS  Google Scholar 

  186. Hallgren B, Sourander P (1958) The effect of age on the nonhemin iron in the human brain. J Neurochem 3:41

    Article  PubMed  CAS  Google Scholar 

  187. Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2:327–340

    Article  PubMed  CAS  Google Scholar 

  188. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56:978–982

    Article  PubMed  CAS  Google Scholar 

  189. Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73:407–415

    Article  PubMed  CAS  Google Scholar 

  190. Berg D, Siefker C, Becker G (2001) Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol 248:684–689

    Article  PubMed  CAS  Google Scholar 

  191. Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P, Tucha O, Preier M, Lange KW, Reiners K, Gerlach M, Becker G (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    Article  PubMed  Google Scholar 

  192. Harrington MG, Merril CR (1984) Two-dimensional electrophoresis and “ultrasensitive” silver staining of cerebrospinal fluid proteins in neurological diseases. Clin Chem 30:1933–1937

    PubMed  CAS  Google Scholar 

  193. Harrington MG, Fonteh AN, Biringer RG, Hühmer AF, Cowan RP (2006) Prostaglandin D synthase isoforms from cerebrospinal fluid vary with brain pathology. Dis Markers 22:73–81

    PubMed  CAS  Google Scholar 

  194. Mollenhauer B, Cullen V, Kahn I, Krastins B, Outeiro TF, Pepivani I, Ng J, Schulz-Schaeffer W, Kretzschmar HA, McLean PJ, Trenkwalder C, Sarracino DA, Vonsattel JP, Locascio JJ, El-Agnaf OM, Schlossmacher MG (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213:315–325

    Article  PubMed  CAS  Google Scholar 

  195. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    Article  PubMed  CAS  Google Scholar 

  196. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG (2011) Alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    Article  PubMed  CAS  Google Scholar 

  197. Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab SA, Kasai T, Ishigami N, Tamaoka A, Nakagawa M, El-Agnaf OM (2010) Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1772

    Article  PubMed  CAS  Google Scholar 

  198. Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 129:526–529

    Article  PubMed  CAS  Google Scholar 

  199. Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Kim HM, Leverenz JB, Montine TJ, Ginghina C, Kang UJ, Cain KC, Wang Y, Aasly J, Goldstein D, Zhang J (2010) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580

    Article  CAS  Google Scholar 

  200. Ishigami N, Tokuda T, Ikegawa M, Komori M, Kasai T, Kondo T, Matsuyama Y, Nirasawa T, Thiele H, Tashiro K, Nakagawa M (2012) Cerebrospinal fluid proteomic patterns discriminate Parkinson’s disease and multiple system atrophy. Mov Disord 27:851–857

    Article  PubMed  CAS  Google Scholar 

  201. Nagai Y, Ueno S, Saeki Y, Soga F, Hirano M, Yanagihara T (1996) Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology 46:791–795

    Article  PubMed  CAS  Google Scholar 

  202. Caronti B, Antonini G, Calderaro C, Ruggieri S, Palladini G, Pontieri FE, Colosimo C (2001) Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson’s disease. J Neural Transm 108:803–807

    Article  PubMed  CAS  Google Scholar 

  203. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  204. Benecke R, Strumper P, Weiss H (1993) Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116(Pt 6):1451–1463

    Article  PubMed  Google Scholar 

  205. Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    Article  PubMed  CAS  Google Scholar 

  206. Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R, Trippi F, Barale R, Frenzilli G, Rodilla V, Bonuccelli U (2002) Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 58:1809–1815

    Article  PubMed  CAS  Google Scholar 

  207. Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM (1996) Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol 144:480–484

    Article  PubMed  CAS  Google Scholar 

  208. Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166:561–567

    Article  PubMed  CAS  Google Scholar 

  209. Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D, Shoulson I, Ascherio A; Parkinson Study Group PRECEPT Investigators, Hyson C, Gorbold E, Rudolph A, Kieburtz K, Fahn S, Gauger L, Goetz C, Seibyl J, Forrest M, Ondrasik J (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 65:716–723

    Article  PubMed  Google Scholar 

  210. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396

    Article  PubMed  Google Scholar 

  211. Ascherio A, Lewitt PA, Xu K, Eberly S, Watts A, Matson WR, Marras C, Kieburtz K, Rudolph A, Bogdanov MB, Schwid SR, Tennis M, Tanner CM, Beal MF, Lang AE, Oakes D, Fahn S, Shoulson I, Schwarzschild MA; Parkinson Study Group DATATOP Investigators (2009) Urate as a predictor of the rate of clinical decline in Parkinson disease, Parkinson study group DATATOP investigators. Arch Neurol 66:1460–1468

    Article  PubMed  Google Scholar 

  212. O’Reilly EJ, Gao X, Weisskopf MG, Chen H, Schwarzschild MA, Spiegelman D, Ascherio A (2010) Plasma urate and Parkinson’s disease in women. Am J Epidemiol 172:666–670

    Article  PubMed  Google Scholar 

  213. Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA (2010) A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J 24:587–598

    Article  PubMed  CAS  Google Scholar 

  214. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83:293–309

    Article  PubMed  CAS  Google Scholar 

  215. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342:1034–1039

    Article  PubMed  CAS  Google Scholar 

  216. Sheta EA, Appel SH, Goldknopf IL (2006) 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev Proteomics 3:45–62

    Article  PubMed  CAS  Google Scholar 

  217. Goldknopf IL (2008) Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Rev Proteomics 5:1–8

    Article  PubMed  CAS  Google Scholar 

  218. Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F (2010) Plasma alpha-synuclein in patients with Parkinson’s disease with and without treatment. Mov Disord 25:489–493

    Article  PubMed  Google Scholar 

  219. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P, Chilcote TJ (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55–59

    Article  PubMed  CAS  Google Scholar 

  220. Michell AW, Luheshi LM, Barker RA (2005) Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci Lett 381:294–298

    Article  PubMed  CAS  Google Scholar 

  221. Maita C, Tsuji S, Yabe I, Hamada S, Ogata A, Maita H, Iguchi-Ariga SM, Sasaki H, Ariga H (2008) Secretion of DJ-1 into the serum of patients with Parkinson’s disease. Neurosci Lett 431:86–89

    Article  PubMed  CAS  Google Scholar 

  222. Waragai M, Wei J, Fujita M, Nakai M, Ho GJ, Masliah E, Akatsu H, Yamada T, Hashimoto M (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345:967–972

    Article  PubMed  CAS  Google Scholar 

  223. Waragai M, Nakai M, Wei J, Fujita M, Mizuno H, Ho G, Masliah E, Akatsu H, Yokochi F, Hashimoto M (2007) Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 425:18–22

    Article  PubMed  CAS  Google Scholar 

  224. Zetterberg H, Ruetschi U, Portelius E, Brinkmalm G, Andreasson U, Blennow K, Brinkmalm A (2008) Clinical proteomics in neurodegenerative disorders. Acta Neurol Scand 118:1–11

    Article  PubMed  CAS  Google Scholar 

  225. Mandel S, Amit T, Kalfon L, Youdim MB (2007) Applying transcriptomic and proteomic knowledge to Parkinson’s disease drug discovery. Expert opin drug disc 2:1225–1240

    Article  CAS  Google Scholar 

  226. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR; Global PD Gene Expression (GPEX) Consortium (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease, Global PD Gene Expression (GPEX) consortium. Sci Transl Med 2:52ra73

    Article  PubMed  CAS  Google Scholar 

  227. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser MA, Vance JM, Sudarsky LR, Standaert DG, Growdon JH, Jensen RV, Gullans SR (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A 104:955–960

    Article  PubMed  CAS  Google Scholar 

  228. Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, Bresnick EH, Schlossmacher MG (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A 105:10907–10912

    Article  PubMed  CAS  Google Scholar 

  229. Kedmi M, Bar-Shira A, Gurevich T, Giladi N, Orr-Urtreger A (2011) Decreased expression of B cell related genes in leukocytes of women with Parkinson’s disease. Mol Neurodegener 6:66

    Article  PubMed  CAS  Google Scholar 

  230. Grunblatt E, Zehetmayer S, Jacob CP, Muller T, Jost WH, Riederer P (2010) Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease. J Neural Transm 117:1387–1393

    Article  PubMed  CAS  Google Scholar 

  231. Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  PubMed  CAS  Google Scholar 

  232. Molochnikov L, Rabey JM, Dobronevsky E, Bonucelli U, Ceravolo R, Frosini D, Grunblatt E, Riederer P, Jacob C, Aharon-Peretz J, Bashenko Y, Youdim MB, Mandel SA (2012) A molecular signature in blood identifies early Parkinson’s disease. Mol Neurodegener 7:26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Mandel or Amos D. Korczyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mandel, S., Korczyn, A.D. (2013). The Use of Biomarkers for Prediction and Prevention of Alzheimer’s and Parkinson’s Diseases. In: Mandel, S. (eds) Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in Predictive, Preventive and Personalised Medicine, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5866-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5866-7_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5865-0

  • Online ISBN: 978-94-007-5866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics