Skip to main content

Molecular Phylogeny and Evolution in Primates

  • Chapter
  • First Online:
Post-Genome Biology of Primates

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Primate evolution draws special attention because of its direct relevance to human origins. However, there are still several phylogenetic problems remaining among the primates. Recent molecular evolution studies using nuclear and mitochondrial DNA data seem to have established a consensus with respect to the phylogenetic positions of various primates. In addition, the presence/absence patterns of the short interspersed elements (SINE), which are regarded to be informative molecular cladistic markers, strongly supported the phylogenetic placement of several problematic species. Although the phylogenetic relationships of living primate species are relatively well established, the divergence times among them are still controversial. This controversy has arisen partly because different authors have used different molecular data with different methods and calibration points. Here, we review recent molecular phylogenetic studies of primates together with our own study. Furthermore, we compare and discuss the divergence times estimated for various primate species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

K/T:

Cretaceous/tertiary

Mya:

Million years ago

NWM:

New World monkey

OWM:

Old World monkey

R:

Purines (adenine and guanine)

rRNA:

Ribosomal RNA

SINE:

Short interspersed element

Y:

Pyrimidines (cytosine and thymine)

References

  • Adkins RM, Honeycutt RL (1994) Evolution of the primate cytochrome c oxidase subunit II gene. J Mol Evol 38:215–231

    PubMed  CAS  Google Scholar 

  • Aiello LC, Collard M (2001) Palaeoanthropology Our newest oldest ancestor? Nature 410:526–527

    PubMed  CAS  Google Scholar 

  • Arnason U, Adegoke JA, Bodin K et al (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156

    Google Scholar 

  • Barroso CML, Schneider H, Schneider MPC et al (1997) Update on the phylogenetic systematics of new world monkeys: further DNA evidence for placing the pygmy marmoset (Cebuella) within the genus Callithrix. Int J Primatol 18:651–674

    Google Scholar 

  • Begun DR, Ward CV, Rose MD (1997) Events in hominoid evolution. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: miocene hominoid evolution and adaptation. Plenum, New York

    Google Scholar 

  • Bigoni F, Stanyon R, Wimmer R et al (2003) Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian colobines. Am J Primatol 60:85–93

    PubMed  CAS  Google Scholar 

  • Bigoni F, Houck M, Ryder O et al (2004) Chromosome painting shows that Pygathrix nemaeus has the most basal karyotype among Asian Colobinae. Int J Primatol 25:679–688

    Google Scholar 

  • Brandon-Jones D, Eudey AA, Geissmann T et al (2004) An Asian primate classification. Int J Primatol 25:97–164

    Google Scholar 

  • Brunet M, Guy F, Pilbeam D et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151

    Google Scholar 

  • Canavez FC, Moreira MAM, Ladasky JJ et al (1999a) Molecular phylogeny of new world primates (Platyrrhini) based on beta2-microglobulin DNA sequences. Mol Phylogenet Evol 12:74–82

    PubMed  CAS  Google Scholar 

  • Canavez FC, Moreira MAM, Simon F et al (1999b) Phylogenetic relationships of the Callitrichinae (Platyrrhini, primates) based on beta2-microglobulin DNA sequences. Am J Primatol 48:225–236

    PubMed  CAS  Google Scholar 

  • Chan YC, Roos C, Inoue-Murayama M et al (2010) Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS One 5:e14419

    PubMed  CAS  Google Scholar 

  • Chatterjee HJ, Ho SY, Barnes I et al (2009) Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9:259

    PubMed  Google Scholar 

  • Chaves R, Sampaio I, Schneider MP et al (1999) The place of Callimico goeldii in the callitrichine phylogenetic tree: evidence from von Willenbrand factor gene intron II sequences. Mol Phylogenet Evol 13:392–404

    PubMed  CAS  Google Scholar 

  • Chivers DJ, Hladik CM (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:377–386

    Google Scholar 

  • Collins AC (2004) Atelinae phylogenetic relationships: the trichotomy revived? Am J Phys Anthropol 124:285–296

    PubMed  CAS  Google Scholar 

  • Collura RV, Auerbach MR, Stewart CB (1996) A quick, direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes. Curr Biol 6:1337–1339

    PubMed  CAS  Google Scholar 

  • Davenport TR, Stanley WT, Sargis EJ et al (2006) A new genus of African monkey, Rungwecebus: morphology, ecology, and molecular phylogenetics. Science 312:1378–1381

    PubMed  CAS  Google Scholar 

  • Delson E (1980) Fossil macaques phyletic relationships and a scenario of development. In: Lindburg DG (ed) The macaques: studies in ecology, behavior, and evolution. Van Nostrand Reinhold, New York

    Google Scholar 

  • Delson E (1992) Evolution of old world monkeys. In: Johns JS, Martin RD, Pilbeam D et al (eds) The Cambridge encyclopedia of human evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Delson E (1994) Evolutionary history of the colobine monkeys in paleoenvironmental perspective. In: Oates JF, Davies AG (eds) Colobine monkeys: their ecology, behaviour, and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Delson E (2000) Colobinae. In: Delson E, Tattersall I, Van Couvering JA et al (eds) Encyclopedia of human evolution and prehistory, 2nd edn. Garland, New York

    Google Scholar 

  • Disotell TR (1994) Generic level relationships of the Papionini (Cercopithecoidea). Am J Phys Anthropol 94:47–57

    Google Scholar 

  • Disotell TR (2003) Primates: phylogenetics. Nature Publishing Group, London, Encyclopedia of the human genome

    Google Scholar 

  • Disotell TR, Raaum RL (2002) Molecular timescale and gene tree incongruence in the guenons. In: Glenn ME, Cords M (eds) The guenons: diversity and adaptation in African monkeys. Kluwer, New York

    Google Scholar 

  • Dutrillaux B, Muleris M, Couturier J (1988) Chromosomal evolution of Cercopithecinae. In: Gautier-Hion A, Bourliere F, Gautier JP et al (eds) A primate radiation: evolutionary biology of the African guenons. Cambridge University Press, New York

    Google Scholar 

  • Eizirik E, Murphy WJ, O’Brien SJ (2001) Molecular dating and biogeography of the early placental mammal radiation. J Hered 92:212–219

    PubMed  CAS  Google Scholar 

  • Fa JE (1989) The genus Macaca: a review of taxonomy and evolution. Mamm Rev 19:45–81

    Google Scholar 

  • Fabre PH, Rodrigues A, Douzery EJ (2009) Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53:808–825

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic, San Diego

    Google Scholar 

  • Fleagle JG, McGraw WS (1999) Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proc Natl Acad Sci USA 96:1157–1161

    PubMed  CAS  Google Scholar 

  • Fooden J (1976) Provisional classifications and key to living species of macaques (primates: Macaca). Folia Primatol (Basel) 25:225–236

    CAS  Google Scholar 

  • Gibson A, Gowri-Shankar V, Higgs PG et al (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22:251–264

    PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J et al (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    PubMed  CAS  Google Scholar 

  • Groves CP (1970) The forgotten leaf-eaters, and the phylogeny of the Colobinae. In: Napier JR, Napier PH (eds) Old World monkeys: evolution, systematics, and behavior. Academic, New York

    Google Scholar 

  • Groves CP (1978) Phylogenetic and populations systematics of the mangabeys (Primates: Cercopithecoidea). Primates 19:1–34

    Google Scholar 

  • Groves CP (1989) A theory of human and primate evolution. Oxford University Press, New York

    Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Groves CP (2005) Order Primates. In: Wilson DE, Reeder DM (eds) Mammal species of the world, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Haile-Selassie Y (2001) Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412:178– 81

    Google Scholar 

  • Harada ML, Schneider H, Schneider MP et al (1995) DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol Phylogenet Evol 4:331–349

    PubMed  CAS  Google Scholar 

  • Harris EE, Disotell TR (1998) Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini). Mol Biol Evol 15:892–900

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Thorne JL, Kishino H (2003) Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet Syst 78:267–283

    PubMed  CAS  Google Scholar 

  • Hayasaka K, Fujii K, Horai S (1996) Molecular phylogeny of macaques: implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol Biol Evol 13:1044–1053

    PubMed  CAS  Google Scholar 

  • Hedges SB, Parker PH, Sibley CG et al (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature (Lond) 381:226–229

    CAS  Google Scholar 

  • Hodgson JA, Sterner KN, Matthews LJ et al (2009) Successive radiations, not stasis, in the South American primate fauna. Proc Natl Acad Sci USA 106:5534–5539

    PubMed  CAS  Google Scholar 

  • Horai S, Hayasaka K, Kondo R et al (1995) The recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536

    PubMed  CAS  Google Scholar 

  • Horovitz I, Meyer A (1995) Systematics of New World monkeys (Platyrrhini, primates) based on 16 S mitochondrial DNA sequences: a comparative analysis of different weighting methods in cladistic analysis. Mol Phylogenet Evol 4:448–456

    PubMed  CAS  Google Scholar 

  • Horovitz I, Zardoya R, Meyer A (1998) Platyrrhine systematics: a simultaneous analysis of molecular and morphological data. Am J Phys Anthropol 106:261–281

    PubMed  CAS  Google Scholar 

  • Horvath JE, Weisrock DW, Embry SL et al (2008) Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar’s lemurs. Genome Res 18:489–499

    PubMed  CAS  Google Scholar 

  • Hudelot C, Gowri-Shankar V, Jow H et al (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol 28:241–252

    PubMed  CAS  Google Scholar 

  • Israfil H, Zehr SM, Mootnick AR et al (2011) Unresolved molecular phylogenies of gibbons and siamangs (family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455

    PubMed  CAS  Google Scholar 

  • Jablonski N (1998) The evolution of the doucs and snub-nosed monkeys and the question of the phyletic unity of the odd-nosed colobines. In: Jablonski N (ed) Natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, New Jersey

    Google Scholar 

  • Jablonski NG, Peng YZ (1993) The phylogenetic relationships and classification of the doucs and snub-nosed langurs of China and Vietnam. Folia Primatol 60:36–55

    PubMed  CAS  Google Scholar 

  • Jow H, Hudelot C, Rattray M et al (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol 19:1591–1601

    PubMed  CAS  Google Scholar 

  • Karanth KP, Singh L, Collura RV et al (2008) Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Mol Phylogenet Evol 46:683–694

    Google Scholar 

  • Karanth KP, Delefosse T, Rakotosamimanana B et al (2005) Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates. Proc Natl Acad Sci USA 102:5090–5095

    PubMed  CAS  Google Scholar 

  • Kelley J (2002) The hominoid radiation in Asia. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge

    Google Scholar 

  • Li J, Han K, Xing J et al (2009) Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene (Amst) 448:242–249

    CAS  Google Scholar 

  • Martin RD (1993) Primate origins: plugging the gaps. Nature (Lond) 363:223–234

    CAS  Google Scholar 

  • Martin RD (2003) Combing the primate record. Nature (Lond) 422:388–391

    CAS  Google Scholar 

  • Masters JC, Anthony NM, de Wit MJ et al (2005) Reconstructing the evolutionary history of the Lorisidae using morphological, molecular, and geological data. Am J Phys Anthropol 127:465–480

    PubMed  CAS  Google Scholar 

  • Masters JC, Boniotto M, Crovella S et al (2007) Phylogenetic relationships among the Lorisoidea as indicated by craniodental morphology and mitochondrial sequence data. Am J Primatol 69:6–15

    PubMed  Google Scholar 

  • Matsudaira K, Ishida T (2010) Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera. Mol Phylogenet Evol 55:454–459

    PubMed  Google Scholar 

  • Matsui A, Rakotondraparany F, Hasegawa M et al (2007) Determination of a complete lemur mitochondrial genome from feces. Mamm Study 32:7–16

    Google Scholar 

  • Matsui A, Rakotondraparany F, Munechika I et al (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene (Amst) 441:53–66

    CAS  Google Scholar 

  • Meireles CM, Czelusniak J, Schneider MPC et al (1999) Molecular phylogeny of ateline new world monkeys (Platyrrhini, Atelinae) based on gamma-globin gene sequences: evidence that Brachyteles is the sister group of Lagothrix. Mol Phylogenet Evol 12:10–30

    PubMed  CAS  Google Scholar 

  • Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature (Lond) 385:151–154

    CAS  Google Scholar 

  • Mootnick A, Groves CP (2005) A new generic name for the hoolock gibbon (Hylobatidae). Int J Primatol 26:971–976

    Google Scholar 

  • Morales JC, Melnick DJ (1998) Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J Hum Evol 34:1–23

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature (Lond) 409:614–618

    CAS  Google Scholar 

  • Ni X, Wang Y, Hu Y et al (2004) A euprimate skull from the early Eocene of China. Nature (Lond) 427:65–68

    CAS  Google Scholar 

  • Opazo JC, Wildman DE, Prychitko T et al (2006) Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 40:274–280

    PubMed  CAS  Google Scholar 

  • Osterholz M, Walter L, Roos C (2008) Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evol Biol 8:58

    PubMed  Google Scholar 

  • Oxnard CE (1981) The uniqueness of Daubentonia. Am J Phys Anthropol 54:1–21

    Google Scholar 

  • Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phyl Evol 18:14–25

    CAS  Google Scholar 

  • Page SL, Chiu C, Goodman M (1999) Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences. Mol Phylogenet Evol 13:348–359

    PubMed  CAS  Google Scholar 

  • Pastorini J, Forstner MR, Martin RD (2002) Phylogenetic relationships among Lemuridae (Primates): evidence from mtDNA. J Hum Evol 43:463–478

    PubMed  Google Scholar 

  • Pastorini J, Thalmann U, Martin RD (2003) A molecular approach to comparative phylogeography of extant Malagasy lemurs. Proc Natl Acad Sci USA 13:5879–5884

    Google Scholar 

  • Peng YZ, Pan RL, Jablonski NG (1993) Classification and evolution of Asian colobines. Folia Primatol (Basel) 60:106–117

    CAS  Google Scholar 

  • Perelman P, Johnson WE, Roos C et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342

    PubMed  CAS  Google Scholar 

  • Phillips MJ, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28:171–185

    PubMed  CAS  Google Scholar 

  • Pilbeam D, Rose MD, Barry JC et al (1990) New Sivapithecus humeri from Pakistan and the relationship of Sivapithecus and Pongo. Nature (Lond) 348:237–239

    CAS  Google Scholar 

  • Porter CA, Sampaio I, Schneider H et al (1995) Evidence on primate phylogeny from ε-globin gene sequences and flanking regions. J Mol Evol 40:30–55

    PubMed  CAS  Google Scholar 

  • Porter CA, Page SL, Czelusniak J et al (1997a) Phylogeny and evolution of selected primates as determined by sequences of the ε-globin locus and 50 flanking regions. Int J Primatol 18:261–295

    Google Scholar 

  • Porter CA, Czelusniak J, Schneider H et al (1997b) Sequence of the primate epsilon-globin gene: implication for systematics of the marmosets and other new world primates. Gene (Amst) 205:59–71

    CAS  Google Scholar 

  • Porter CA, Czelusniak J, Schneider H et al (1999) Sequence from the 5′ flanking region of the epsilon-globin gene support the relationship of Callicebus with the Pitheciins. Am J Primatol 48:69–75

    PubMed  CAS  Google Scholar 

  • Poux C, Douzery EJ (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1–16

    PubMed  Google Scholar 

  • Poux C, Madsen O, Marquard E et al (2005) Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. Syst Biol 54:719–730

    PubMed  Google Scholar 

  • Poux C, Chevret P, Huchon D et al (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55:228–244

    PubMed  Google Scholar 

  • Prychitko T, Johnson RM, Wildman DE et al (2005) The phylogenetic history of New World monkey beta globin reveals a platyrrhine beta to delta gene conversion in the atelid ancestry. Mol Phylogenet Evol 35:225–234

    PubMed  CAS  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM et al (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    PubMed  Google Scholar 

  • Ray DA, Xing J, Hedges DJ et al (2005) Alu insertion loci and platyrrhine primate phylogeny. Mol Phylogenet Evol 35:117–126

    PubMed  CAS  Google Scholar 

  • Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19:486–494

    PubMed  CAS  Google Scholar 

  • Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci USA 101:10650–10654

    PubMed  CAS  Google Scholar 

  • Rosenberger AL, Hartwig WC, Wolff RG (1991) Szalatavus attricuspis, an early platyrrhine primate. Folia Primatol (Basel) 56:225–233

    CAS  Google Scholar 

  • Rumpler Y, Warter S, Petter JJ et al (1988) Chromosomal evolution of Malagasy lemurs. XI. Phylogenetic position of Daubentonia madagascariensis. Folia Primatol (Basel) 50:124–129

    CAS  Google Scholar 

  • Ruvolo M (1988) Genetic evolution in the African guenons. In: Gautier-Hion A, Bourliere F, Gautier JP et al (eds) A primate radiation: evolutionary biology of the African guenons. Cambridge University Press, New York

    Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784

    PubMed  CAS  Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553

    PubMed  CAS  Google Scholar 

  • Schneider H (2000) The current status of the New World monkey phylogeny. An Acad Bras Cienc 72:165–172

    PubMed  CAS  Google Scholar 

  • Schneider H, Schneider MPC, Sampaio I et al (1993) Molecular phylogeny of the new world monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 2:225–242

    PubMed  CAS  Google Scholar 

  • Schneider H, Sampaio I, Harada ML et al (1996) Molecular phylogeny of the New World monkeys (Platyrrhini, primates) based on two unlinked nuclear genes: IRBP intron 1 and epsilon-globin sequences. Am J Phys Anthropol 100:153–179

    PubMed  CAS  Google Scholar 

  • Schwartz JH (1992) Topics in primatology. In: Matano S, Tuttle RH, Ishida H et al (eds) Evolutionary biology, reproductive endocrinology, and virology. University of Tokyo Press, Tokyo

    Google Scholar 

  • Seiffert ER, Simons EL, Attia Y (2003) Fossil evidence for an ancient divergence of lorises and galagos. Nature (Lond) 422:421–424

    CAS  Google Scholar 

  • Singer SS, Schmitz J, Schwiegk C et al (2003) Molecular cladistic markers in the new world monkey phylogeny (Platyrrhini, Primates). Mol Phylogenet Evol 26:490–501

    PubMed  CAS  Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E et al (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061

    PubMed  CAS  Google Scholar 

  • Steiper ME, Ruvolo M (2003) New world monkey phylogeny based on X-linked G6PD DNA sequences. Mol Phylogenet Evol 27:121–130

    PubMed  CAS  Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394

    PubMed  CAS  Google Scholar 

  • Sterner KN, Raaum RL, Zhang YP et al (2006) Mitochondrial data support an odd-nosed colobine clade. Mol Phylogenet Evol 40:1–7

    PubMed  CAS  Google Scholar 

  • Stewart C, Disotell T (1998) Primate evolution in and out of Africa. Curr Biol 8:R582–R588

    PubMed  CAS  Google Scholar 

  • Strasser E, Delson E (1987) Cladistic analysis of cercopithecid relationships. J Hum Evol 16:81–99

    Google Scholar 

  • Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic, New York

    Google Scholar 

  • Takacs Z, Morales JC, Geissmann T et al (2005) A complete species-level phylogeny of the Hylobatidae based on mitochondrial ND3-ND4 gene sequences. Mol Phylogenet Evol 36:456–467

    PubMed  CAS  Google Scholar 

  • Tavaré S, Marshall CR, Will O et al (2002) Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature (Lond) 416:726–729

    Google Scholar 

  • Thinh VN, Mootnick AR, Geissmann T et al (2010) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74

    PubMed  Google Scholar 

  • Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702

    PubMed  Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657

    PubMed  CAS  Google Scholar 

  • Ting N (2008) Mitochondrial relationships and divergence dates of the African colobines: evidence of Miocene origins for the living colobus monkeys. J Hum Evol 55:312–325

    PubMed  Google Scholar 

  • Ting N, Tosi AJ, Li Y et al (2008) Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys. Mol Phylogenet Evol 46:466–474

    PubMed  CAS  Google Scholar 

  • Tosi AJ, Morales JC, Melnick DJ (2000) Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Mol Phylogenet Evol 17:133–144

    PubMed  CAS  Google Scholar 

  • Tosi AJ, Buzzard PJ, Morales JC et al (2002) Y-chromosome data and tribal affiliations of Allenopithecus and Miopithecus. Int J Primatol 23:1287–1299

    Google Scholar 

  • Tosi AJ, Disotell TR, Morales JC et al (2003) Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Mol Phylogenet Evol 27:510–521

    PubMed  CAS  Google Scholar 

  • Tosi AJ, Melnick DJ, Disotell TR (2004) Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini). J Hum Evol 46:223–237

    PubMed  Google Scholar 

  • Tosi AJ, Detwiler KM, Disotell TR (2005) X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Mol Phylogenet Evol 36:58–66

    PubMed  CAS  Google Scholar 

  • von Dornum M, Ruvolo M (1999) Phylogenetic relationships of the New World monkeys (primates, Platyrrhini) based on nuclear G6PD DNA sequences. Mol Phylogenet Evol 11:459–476

    Google Scholar 

  • Waddell P, Penny D (1996) Evolutionary trees of apes and humans from DNA sequences. In: Lock AJ, Peters CR (eds) Handbook of human symbolic evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wang W, Su B, Lan H et al (1995) Phylogenetic relationships among two species of golden monkey and three species of leaf monkey inferred from rDNA variation. Folia Primatol (Basel) 65:138–143

    CAS  Google Scholar 

  • Ward S (1997) The taxonomy and phylogenetic relationships of Sivapithecus revisited. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils. Plenum, New York

    Google Scholar 

  • Xing J, Wang H, Han K et al (2005) A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 37:872–880

    PubMed  CAS  Google Scholar 

  • Yoder AD (1994) Relative position of the Cheirogaleidae in strepsirrhine phylogeny: a comparison of morphological and molecular methods and results. Am J Phys Anthropol 94:25–46

    PubMed  CAS  Google Scholar 

  • Yoder AD, Cartmill M, Ruvolo M et al (1996) Ancient single origin for Malagasy primates. Proc Natl Acad Sci USA 93:5122–5126

    PubMed  CAS  Google Scholar 

  • Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424

    PubMed  CAS  Google Scholar 

  • Yoder AD, Burns MM, Zehr S et al (2003) Single origin of Malagasy Carnivora from an African ancestor. Nature (Lond) 421:734–737

    CAS  Google Scholar 

  • Zhang Y, Ryder O (1998) Mitochondrial cytochrome b gene sequences of Old World monkeys: with special reference on evolution of Asian colobines. Primates 39:39–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Matsui, A., Hasegawa, M. (2012). Molecular Phylogeny and Evolution in Primates. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_16

Download citation

Publish with us

Policies and ethics