Skip to main content

Neurochemical abnormalities in Alzheimer’s disease and Parkinson’s disease — a comparative review

  • Conference paper
Dementia in Parkinsonism

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 51))

Summary

We report a meta-analysis of the brain neurochemical abnormalities in Alzheimer’s (AD) and Parkinson’s disease (PD). Evidence for oxidative stress, and disorders of energy metabolism and excitatory amino acids is presented for both disorders. However, limited data and conflicting findings preclude any definitive statement relating to differences and overlap between the two conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5: 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Davison AN, Francis PT, Palmer AM, Pearce BR, et al. (1985) Neurotransmitter and metabolic dysfunction in Alzheimer’s dementia: relationship to histopathological features. Interdiscipl Topics Geront 19: 156–174.

    CAS  Google Scholar 

  • Butterworth J, Tennant M, Yates CM (1988) Brain enzymes in agonal state and dementia. Biochem Soc Trans 17: 208–209.

    Google Scholar 

  • Cedarbaum JM, Sheu K, Harding B, Blass J, Agid F-J, et al. (1990) Deficiency of glutamate dehydrogenase in postmortem brain samples from Parkinsonian putamen. Ann Neurol 28: 111–112.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn RF, Barton AJL, Hardy JA, Wester P, Winblad B (1987) Region-specific defects in glutamate and gamma-aminobutyric acid innervation in Alzheimer’s disease. Biochem Soc Trans 15: 505–506.

    CAS  Google Scholar 

  • Cowburn R, Hardy J, Roberts P, Briggs R (1988) Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer’s disease. Brain Res 452: 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn RF, Hardy JA, Briggs RS, Roberts P (1989) Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain. J Neurochem 52: 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7: 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Slater P, Simpson M, Royston C, Deakin JFW, et al. (1987) Sodium dependent D-3H-aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s disease. Neurosci Lett 7: 213–217.

    Article  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid YJ (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 72: 1236–1239.

    Google Scholar 

  • Ellison DW, Beai MF, Mazurek MF, Bird ED, Martin JB, et al. (1986) A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann Neurol 20: 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399: 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JJ, Kish SJ, Chang LJ, Morito C, Shannak K, et al. (1988) Dementia, parkinsonism, and motor neuron disease: neurochemical and neuropathological correlates. Ann Neurol 24: 688–691.

    Article  PubMed  CAS  Google Scholar 

  • Gramsbergen JBP, Mountjoy CQ, Rossor MN, Reynolds GP, Roth M, et al. (1987) A correlative study on hippocampal cation shifts and amino acids and clinico-pathologi-cal data in Alzheimer’s disease. Neurobiol Aging 8: 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP (1985) Alterations in L-glutamate binding in Alzheimer’s and Huntington’s disease. Science 227: 1496–1499.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal L-3H-glutamate binding. J Neurochem 48: 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al. (1986) Glutamate deficits in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 50: 356–357.

    Google Scholar 

  • Hardy J, Cowburn R, Barton A, Reynolds G, Lofdahl E, et al. (1987) Region-specific loss of glutamate innervation in Alzheimer’s disease. Neurosci Lett 73: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Jansen KLR, Faull RLM, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensine, adenosine, benzodiazepine, serotonin and opioid receptors — an autoradiographic study. Neuroscience 39: 613–627.

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Morito C, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL, Adolfsson R, Gottfries CG, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Maritila RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease. J Neurol Sci 86: 321–331.

    Article  Google Scholar 

  • McGeer EG, Singh E, McGeer PL (1987) Sodium-dependent glutamate binding in senile dementia. Neurobiol Aging 8: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, Singh E A, McGeer PL (1987) Gamma-glutamyltransf erase: normal cortical levels in Alzheimer disease. Alzheimer Dis Assoc Disord 1: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and preliminary observation in Parkinson’s disease. J Neurol Sci 96: 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Montis de G, Beaumont K, Javoy-Agid F, Agid Y, Constandinidis JJ (1982) Glycine receptors in human substantia nigra as defined by (3H)- strychnine binding. J Neurochem 38: 718–724.

    Article  PubMed  Google Scholar 

  • Moroni F, Lombardi G, Robitaille Y, Etienne P (1986) Senile dementia and Alzheimer’s disease: lack of changes of the cortical content of quinolinic acid. Neurobiol Aging 7: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Mouradian MM, Contreras PC, Monahan JB, Chase TN (1988) 3H-MK-801 binding in Alzheimer’s disease. Neurosci Lett 93: 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Procter AW, Stratmann GC, Bowen DM (1986) Excitatory amino acid-releasing and cholinergic neurones in Alzheimer’s disease. Neurosci Lett 66:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Pearce BR, Bowen DM (1984) 3H-Kainic acid binding and choline acetyltransferase activity in Alzheimer’s dementia. Brain Res 310: 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Pearce BR, Palmer AM, Bowen DM, Wilcock GK, Esiri MM, et al. (1984) Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer’s disease. Neurochem Pathol 2: 221–232.

    PubMed  CAS  Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis ten years on. Br Med Bull 42: 63–69.

    PubMed  CAS  Google Scholar 

  • Perry E, Perry R, Tomlinson BE, Blessed G, Gibson P (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, et al. (1981) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 2: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67: 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Javoy-Agid F, Agid Y, Fibiger HC (1983) Striatal GABAergic neuronal activity is not reduced in Parkinson’s disease. J Neurochem 40: 1120–1123.

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Yong VW, Bergeron C, Hansen S, Jones K (1987) Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer’s disease. Ann Neurol 21: 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Palmer AM, Bowen DM, Murphy E, Neary D (1987) Glutamatergic denervation in Alzheimer’s disease — A cautionary note. J Neurol Neurosurg Psychiatry 50: 825.

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Lowe SL, Palmer AM, Francis PT, Esiri M, et al. (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84: 125–140.

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, et al. (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50: 790–802.

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM (1989) Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer’s disease. Neurosci Lett 101: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Wong EHF, Stratmann GC, Lowe SL, Bowen DM (1989) Reduced glycine stimulation of (3H)-MK-801 binding in Alzheimer’s disease. Neurochem 53: 698–704.

    Article  CAS  Google Scholar 

  • Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, et al. (1988) A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 84: 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi CJ (1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55: 21–28.

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees AJ (1989) A selective increase in particulate superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 53: 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Muramoto O, Kanazawa I, Arai H (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol 19: 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Schapira A, Cooper M, Dexter D, Clark J, Jenner P, et al. (1990) Mitochondrial complex 1 deficiency in Parkinson’s disease. J Neurochem 54: 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV, Mann VM, Cooper JM (1990) Anatomic and disease specifity of NADH CoQ reductase (complex 1) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145

    Article  PubMed  CAS  Google Scholar 

  • Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J Neural Transm [PD-Sect] 4: 227–240.

    Article  CAS  Google Scholar 

  • Sheu KFR, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 17: 444–449.

    Article  PubMed  CAS  Google Scholar 

  • Simpson MDC, Royston MC, Deakin JFW, Cross AJ, Mann DMA, et al. (1988) Regional changes in 3H-D-aspartate and 3H-TCP binding sites in Alzheimer’s disease brains. Brain Res 462: 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP (1988) Increased iron (3) and total iron content in post-mortem substantia nigra of Parkinsonian brain. J Neural Transm 74: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Halket J, Przyborowska A, Riederer P, Beckmann H, et al. (1989) Brain quinolinic acid in Alzheimer’s dementia. Eur Arch Psychiatry Neurol Sci 239: 177–179.

    Article  PubMed  CAS  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Tarbit I-, Perry EK, Perry RH, Blessed G, Tomlinson BE (1980) Hippocampal free amino acids in Alzheimer’s disease. J Neurochem 35: 1246–1249.

    Article  PubMed  CAS  Google Scholar 

  • Uitti RJ, Rajput AH, Rozdilsky B, Bickis M, Wollin TJ (1989) Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 16: 310–314.

    PubMed  CAS  Google Scholar 

  • Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55: 1624–1630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag/Wien

About this paper

Cite this paper

Gsell, W., Strein, I., Krause, U., Riederer, P. (1997). Neurochemical abnormalities in Alzheimer’s disease and Parkinson’s disease — a comparative review. In: Daniel, S.E., Cruz-Sánchez, F.F., Lees, A.J. (eds) Dementia in Parkinsonism. Journal of Neural Transmission. Supplementa, vol 51. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6846-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6846-2_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82959-2

  • Online ISBN: 978-3-7091-6846-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics