Skip to main content

Toxic-Induced Parkinsonism

  • Chapter
  • First Online:
Movement Disorders Curricula

Abstract

A large number of neurotoxins have been linked with secondary parkinsonism including metals, organic solvents and illicit drugs (Table 21.1). Manganese was the first substance linked with parkinsonism (Couper Br Ann Med Pharm 1:41–42, 1837), but the precise cause of its toxicity remains undetermined. An outbreak of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) parkinsonism caused by preparation of a designer drug MPPP in California provided several clues to the possible pathogenesis of Parkinson’s disease and the development of a non-human primate animal model for drug testing (Langston and Ballard Science 219:979–980, 1983). Improved public health measures designed to prevent exposure to neurotoxins is the most important need as apart from chelation therapy or the promotion of excretion of the toxin by haemodialysis, no efficacious symptomatic treatments are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CaNa2EDTA:

Calcium salt of ethylenediaminetetraacetic acid

MDMA:

Methylenedioxymethamphetamine

MPTP:

1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

References

  1. Couper J. On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharm. 1837;1:41–2.

    Google Scholar 

  2. Langston JW, Ballard P. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–80.

    Article  CAS  PubMed  Google Scholar 

  3. Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Ageing Neurosci. 2013;5:23.

    CAS  Google Scholar 

  4. Taba P. Metals and movement disorders. Curr Opin Neurol. 2013;26:435–41.

    Article  CAS  PubMed  Google Scholar 

  5. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, Salmistraro M, Bontrmpi E, Zimmermann NJ, Smith DR. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 2012;33:687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowler RM, Gocheva V, Harris M, Ngo L, Abdelouahab N, Wilkinson J, Doty RL, Park R, Roels HA. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology. 2011;32:596–605.

    Article  CAS  PubMed  Google Scholar 

  7. Abdalian R, Saqui O, Fernandes G, Allard JP. Effects of manganese from a commercial multi-trace element supplement in a population sample of Canadian patients on long-term parenteral nutrition. JPEN J Parenter Enteral Nutr. 2013;37:410–5.

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez B, Casalots-Casado J, Quintana S, Arroyo A, Martin-Fumado C, Galtes I. Fatal mangamese intoxication due to an error in the elaboration of Epsom salts for a liver cleansing diet. Forensic Sci Int. 2012;223:e1–4.

    Article  CAS  PubMed  Google Scholar 

  9. Bouchard M, Mergler D, Baldwin ME, Panisset M. Manganese cumulative exposure and symptoms: a follow-up study of alloy workers. Neurotoxicology. 2008;29:577–83.

    Article  CAS  PubMed  Google Scholar 

  10. Da Silva CJ, da Rocha AJ, Jeronymo S, Mendes MF, Milani FT, Maia ACM, Braga FT, Sens YAS, Miorin LA. A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: manganism symptoms and T1 hyperintense changes in the basal ganglia. Am J Neuroradiol. 2007;28:1474–9.

    Article  PubMed  Google Scholar 

  11. Aggarwal A, Vaidya S, Shah S, Singh J, Desai S, Bhatt M. Reversible parkinsonism and T1W pallidal hyperiontensities in acute liver failure. Mov Disord. 2006;21:1986–90.

    Article  PubMed  Google Scholar 

  12. Blumberg K, Walsh MP. Status report concerning the use of MMT in gasoline. International Council on Clean Transportation (ICCT), 2004.

    Google Scholar 

  13. Mortimer JA, Borenstein AR, Nelson LM. Associations of welding and manganese exposure with Parkinson’s disease. Neurology. 2012;79:1174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Racette BA, Criswell S, Lundin JI, Hobson A, Seixas N, Kotzbauer PT, Evanoff BA, Zhang J, Sheppard L, Checkoway H. Increased risk of parkinsonism associated with welding exposure. Neurotoxicology. 2012;33:1356–61.

    Article  CAS  PubMed  Google Scholar 

  15. Maffeo E, Montuschi A, Stura G, Giordana MT. Chronic acquired hepatocerebral degeneration, pallidal T1 MRI hyperintensity and manganese in a series of cirrhotic patients. Neurol Sci. 2013;34. doi:10.1007/s10072-013-1458-x.

  16. Butterworth RF. Parkinsonism in cirrhosis: pathogenesis and current therapeutic options. Metab Brain Dis. 2013;28:261–7.

    Article  CAS  PubMed  Google Scholar 

  17. Herrero Hernandez E, Valentini MC, Discalzi G. T1 weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: are different pathologies sharing a common mechanism? Neurotoxicology. 2002;23:669–74.

    Article  PubMed  Google Scholar 

  18. Tuschl K, Clayton PT, Gospe Jr SM, Gulab S, Ibrahim S, Singhi P, Aulakh R, Ribeiro RT, Barsottini OG, Zaki MS, Del Rosario ML, Dyack S, Price V, Rideout A, Gordon K, Wevers RA, Chong WKK, Milla PB. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, Severijnen LA, Mammarella LDT, Mignarri A, Monti L, Sanna A, Lu P, Punzo F, Cossu G, Willemsen R, Rasi F, Oostra BA, van de Warrenburg BP, Bonifati V. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro RT, Dos Santos-Neto D, Braga-Neto P, Barsottini OG. Inherited manganism. Clin Neurol Neurosurg. 2013;115:1536–8.

    Article  PubMed  Google Scholar 

  21. Levin OS. “Ephedrone” encephalopathy. Zh Nevrol Psikhiatr Im S S Korsakova. 2005;105:12–20.

    CAS  PubMed  Google Scholar 

  22. Sikk K, Haldre S, Aquilonius SM, Asser A, Paris M, Roose Ä, Petterson J, Eriksson SL, Bergquist J, Taba P. Manganese-induced parkinsonism in methcathinone abusers: bio-markers of exposure and follow-up. Eur J Neurol. 2013;20:915–20.

    Article  CAS  PubMed  Google Scholar 

  23. Stepens A, Groma V, Skuja S, Platkajis A, Aldiņš P, Ekateina I, Martiņsone I, Bricis R, Donaghy M. The outcome of the movement disorder in methcathinone abusers: clinical, MRI and manganesemia changes, and neuropathology. Eur J Neurol. 2013;20. doi:10.1111/ene.12185.

  24. Selikhova M, Fedoryshyn L, Matviyenko Y, Komnatska I, Kyrylchuk M, Krolicki L, Friedman A, Taylor A, Jä¨ger R, Lees A, Sanotsky Y. Parkinsonism and dystonia caused by the illicit use of ephedrone – a longitudinal study. Mov Disord. 2008;23:2224–31.

    Google Scholar 

  25. Ensing JG. Bazooka: cocaine-base and manganese carbonate. J Anal Toxicol. 1985;9:45–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Publ Health. 2012;460508. doi:10.1155/2012/460508.

  27. Silbernagel SM, Carpenter DO, Gilbert SG, Gochfeld M, Groth III E, Hightower JM, Schiavone M. Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: information for physicians. J Toxicol. 2011;983072. doi:10.1155/983072.

  28. Ovaska H, Wood DM, House I, Dargan PI, Jones AL, Murray S. Severe iatrogenic bismuth poisoning with bismuth iodoform paraffin paste treated with DMPS chelation. Clin Toxicol. 2008;46:855–7.

    Article  CAS  Google Scholar 

  29. D’souza HS, Dsouza SA, Menezes G, Venkatesh T. Diagnosis, evaluation, and treatment of lead poisoning in general population. Ind J Clin Biochem. 2011;26:197–201.

    Article  Google Scholar 

  30. Tsai YT, Huang CC, Kuo HC, Wang HM, Shen WS, Shih TS, Chu NS. Central nervous system effects in acute thallium poisoning. Neurotoxicology. 2006;27:291–5.

    Article  CAS  PubMed  Google Scholar 

  31. Lin CY, Liou SH, Hsiech CM, Ku MC, Tsai SY. Dose–response relationship between cumulative mercury exposure index and specific uptake ratio in the striatum on Tc-99m TRODAT SPECT. Clin Nucl Med. 2011;36:689–93.

    Article  PubMed  Google Scholar 

  32. Oomen JW, Smits BW, Swinkels DW, Schreurs BW, Bloem BR, Hedriks MP. A toxic shot from the hip. J Neurol Neurosurg Psychiatry. 2011;82:353–4.

    Article  PubMed  Google Scholar 

  33. Jackson-Lewis V, Ischiropoulos H, Przedborski S. Animal models in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18S1:S183–5.

    Article  Google Scholar 

  34. Iacovelli L, Fulceri F, De Blasi A, Nicoletti F, Ruggieri S, Fornai F. The neurotoxicity of amphetamines: bridging drugs of abuse and neurodegenerative disorders. Exp Neurol. 2006;201:24–31.

    Article  CAS  PubMed  Google Scholar 

  35. Kuniyoshi SM, Jankovic J. MDMA and parkinsonism. N Engl J Med. 2003;349:96–7.

    Article  PubMed  Google Scholar 

  36. O’Suilleabhain P, Giller C. Rapidly progressive parkinsonism in a self- reported user of ecstasy and other drugs. Mov Disord. 2003;18:1378–403.

    Article  PubMed  Google Scholar 

  37. McCann UD, Wong DF, Yokoi F, et al. Reduced striatal dopamine transporte density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35, 428. J Neurosci. 1998;18:8417–22.

    CAS  PubMed  Google Scholar 

  38. Bauer LO. Psychomotor and electroencephalographic sequelae of cocaine dependence. In: D’Haenen H, den Boer JA, Willner P, editors. Biological psychiatry, NIDA Res Monogr, vol. 163. Chichester: Wiley; 1997. p. 66–93.

    Google Scholar 

  39. Büttner A. The neuropathology of drug abuse. Neuropathol Appl Neurobiol. 2011;37:118–34.

    Article  PubMed  Google Scholar 

  40. Mash DC, Ouyang Q, Pablo J, et al. Cocaine abusers have an overexpression of α-synuclein in dopamine neurons. J Neurosci. 2003;23:2564–71.

    CAS  PubMed  Google Scholar 

  41. Heales S, Crawley F, Rudge P. Reversible parkinsonism following heroin pyrolysate inhalation is associated with tetrahydrobiopterin deficiency. Mov Disord. 2004;19:1248–51.

    Article  PubMed  Google Scholar 

  42. Lieberman AN, Goldstein M. Reversible parkinsonism related to meperidine. N Engl J Med 1985;312:509.

    Google Scholar 

  43. Forrester MB. Jimsonweed (Datura stramonium) exposures in Texas 1998–2004. J Toxicol Environ Health. 2006;69:1757–62.

    Article  CAS  Google Scholar 

  44. Meseguer E, Taboada R, Sánchez V, Mena MA, Campos V, de Yebenes JG. Life-threatening parkinsonism induced by kava-kava. Mov Disord. 2002;17:195–6.

    Article  PubMed  Google Scholar 

  45. Lock EA, Zhang J, Checkoway H. Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol Appl Pharmacol. 2013;266:345–55.

    Article  CAS  PubMed  Google Scholar 

  46. Gash DM, Rutland K, Hudson NL, et al. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol. 2008;63:181–92.

    Article  Google Scholar 

  47. Pezzoli G, Strada O, Silani V, Zecchinelli A, Perbellini L, Javoy-Agid F, Ghidoni P, Motti EDF, Masini T, Scarlato G, Agid Y, Hirsch EC. Clinical and pathological features in hydrocarbon-induced parkinsonism. Ann Neurol. 1996;40:922–5.

    Article  CAS  PubMed  Google Scholar 

  48. Huang CC, Yen TC, Shih TS, Chang HY, Chu NS. Dopamine transporter binding study in differentiating carbon disulfide induced parkinsonism from idiopathic parkinsonism. Neuro Toxicol. 2004;25:341–7.

    CAS  Google Scholar 

  49. Tetrud JW, Langston JW, Irwin I, Snow B. Parkinsonism caused by petroleum waste ingestion. Neurology. 1994;44:1051–4.

    Article  CAS  PubMed  Google Scholar 

  50. Franquet E, Salvadó-Figueres M, Lorenzo-Bosquet C, Cuberas-Borrós G, Rovira A, Castell-Conesa J, Hernandez-Vara J. Nigrostriatal pathway dysfunction in a methanol-induced delayed dystonia-parkinsonism. Mov Disord. 2012;27:1220–1.

    Article  PubMed  Google Scholar 

  51. Finkelstein Y, Vardi J. Progressive parkinsonism in a young experimental physicist following long-term exposure to methanol. Neurotoxicology. 2002;23:521–5.

    Article  CAS  PubMed  Google Scholar 

  52. Casida JE, Durkin KA. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol. 2013;58:99–117.

    Article  CAS  PubMed  Google Scholar 

  53. Moretto A, Colosio C. The role of pesticide exposure in the genesis of Parkinson’s disease: epidemiological studies and experimental data. Toxicology. 2013;307:24–34.

    Article  CAS  PubMed  Google Scholar 

  54. Brent J, Schaeffer TH. Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med. 2011;53:1332–8.

    Article  CAS  PubMed  Google Scholar 

  55. Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33:947–71.

    Article  CAS  PubMed  Google Scholar 

  56. Kao HW, Cho NY, Hsueh CJ, Chou MC, Chung HW, Liou M, Chiang SW, Chen SY, Juan CJ, Huang GS, Chen CY. Delayed parkinsonism after CO intoxication: evaluation of the substantia nigra with inversion-recovery MR imaging. Radiology. 2012;265:215–21.

    Article  PubMed  Google Scholar 

  57. Chen NC, Lui CC, Huang SH, Huang CW, Lee CC, Chang WN, Chen CH, Lin YT, Chang CC. Pallidoreticular lesion in carbon monoxide intoxication by gradient echo: report of a case with parkinsonism features and review of the literature. Acta Neurol Taiwan. 2012;21:44–8.

    PubMed  Google Scholar 

  58. Di Filippo M, Tambasco N, Muzi G, Balucani C, Saggese E, Parnetti L, Calabresi P, Rossi A. Parkinsonism and cognitive impairment following chronic exposure to potassium cyanide. Mov Disord. 2008;23:468–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pille Taba MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Taba, P. (2017). Toxic-Induced Parkinsonism. In: Falup-Pecurariu, C., Ferreira, J., Martinez-Martin, P., Chaudhuri, K. (eds) Movement Disorders Curricula. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1628-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1628-9_21

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1627-2

  • Online ISBN: 978-3-7091-1628-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics