Skip to main content

Congenital Disorders of Glycosylation, Dolichol and Glycosylphosphatidylinositol Metabolism

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Numerous proteins are glycosylated with monosaccharides and/or oligosaccharide structures also termed glycans, attached to the polypeptide chain. Most extracellular proteins, such as serum proteins, most membrane proteins and several intracellular proteins (such as lysosomal enzymes), are glycoproteins. The glycans are defined by their linkage to the protein: N-glycans are linked to the amide group of asparagine, and O-glycans are linked to the hydroxyl group of serine or threonine. Glycosylphosphatidylinositol anchors are glycolipids that tether more than 150 proteins to the outer leaflet of plasma membranes. Congenital disorders of glycosylation are due to defects in the synthesis of glycans and in the attachment of glycans to proteins and lipids. It is a rapidly growing disease family, as the number of known CDG has doubled since the previous edition of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P et al. (1980) Familial psychomotor retardation with markedly fluctuating serum proteins, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome? Pediatr Res 14:179

    Google Scholar 

  2. Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: Time for a change! Biochim Biophys Acta 1792:825–826

    Google Scholar 

  3. Jaeken J, van Eijk HG,van der Heul C et al. (1984) Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 144:245–247

    Google Scholar 

  4. Wopereis S, Grünewald S, Morava E et al. (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49:1839–1845

    Google Scholar 

  5. Barone R, Fiumara A, Jaeken J (2014) Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 34:357–366

    Google Scholar 

  6. Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D (2012) Glycomics of pediatric and adult diseases of the central nervous system. J Proteomics 75:5123–5139

    Google Scholar 

  7. Cylwik B, Naklicki M, Chrostek L, Gruszewska E (2013) Congenital disorders of glycosylation. Part I. Defects of protein N-glycosylation. Acta Biochim Pol 60:151–161

    Google Scholar 

  8. Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175

    Google Scholar 

  9. Funke S, Gardeitchik T, Kouwenberg D et al. (2013) Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A 161A:578–584

    Google Scholar 

  10. Goreta SS, Dabelic S, Dumic J (2012) Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb) 22:156–170

    Google Scholar 

  11. Hennet T (2012) Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta 1820:1306–1317

    Google Scholar 

  12. Krasnewich D (2014) Human glycosylation disorders. Cancer Biomark 14:3–16

    Google Scholar 

  13. Matthijs G, Rymen D, Millón MB, Souche E, Race V (2013) Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG. Glycoconj J 30:67–76

    Google Scholar 

  14. Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013) Glycosylation disorders of membrane trafficking. Glycoconj J 30:23–31

    Google Scholar 

  15. Theodore M, Morava E (2011) Congenital disorders of glycosylation: sweet news. Curr Opin Pediatr 23:581–587

    Google Scholar 

  16. Wolthuis DF, Janssen MC, Cassiman D, Lefeber DJ, Morava-Kozicz E (2014) Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 14:217–224

    Google Scholar 

  17. Woods AG, Woods CW, Snow TM (2012) Congenital disorders of glycosylation. Adv Neonatal Care 12:90–95

    Google Scholar 

  18. Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R (2008) The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 73:507–515

    Google Scholar 

  19. Footitt EJ, Karimova A, Burch M, et al. (2009) Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. J Inherit Metab Dis 32:S313–319

    Google Scholar 

  20. Freeze HH, Eklund EA, Ng BG, Patterson MC (2012) Neurology of inherited glycosylation disorders. Lancet Neurol 11:453–466

    Google Scholar 

  21. Morava E, Wosik HN, Sykut-Cegielska J et al (2009) Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 93:350–354

    Google Scholar 

  22. Rymen D, Jaeken J (2014) Skin manifestations in CDG. J Inherit Metab Dis 37:699–708

    Google Scholar 

  23. Lefeber DJ, Morava E, Jaeken J (2011) How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis 34:849–852

    Google Scholar 

  24. Marklova E, Albahri Z (2007) Screening and diagnosis of congenital disorders of glycosylation. Clin Chim Acta 385:6–20

    Google Scholar 

  25. Matthijs G, Rymen D, Millón MB, Souche E, Race V (2013) Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG. Glycoconj J 30:67–76

    Google Scholar 

  26. Sturiale L, Barone R, Garozzo D (2011) The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 34:891–899

    Google Scholar 

  27. Thiel C, Körner C (2011) Mouse models for congenital disorders of glycosylation. J Inherit Metab Dis 34:879–889

    Google Scholar 

  28. Jaeken J, Lefeber D, Matthjs G (2014) Clinical utility gene card for: phosphomannomutase 2 deficiency. Eur J Hum Genet Epub 2014 Jan 15; doi: 10.1038/ejhg. 2013.298

    Google Scholar 

  29. Jaeken J, Lefeber D, Matthjs G (2014) Clinical utility gene card for: phosphomannose isomerase deficiency. Eur J Hum Genet Epub 2015 Feb 4; doi: 10.1038/ejhg. 2014.29

    Google Scholar 

  30. Dercksen M, Crutchley AC, Honey EM et al. (2013) ALG6-CDG in South Africa: genotype phenotype description of five novel patients. JIMD Rep 8:17–23

    Google Scholar 

  31. Jaeken J, Lefeber D, Matthjs G (2015) Clinical utility gene card for: ALG1 defective congenital disorder of glycosylation. Eur J Hum Genet Epub 2015 Feb 4; doi: 10.1038/ejhg.2015.9

    Google Scholar 

  32. Jaeken J, Lefeber D, Matthjs G (2015) Clinical utility gene card for: DPAGT1 defective congenital disorder of glycosylation. Eur J Hum Genet Epub 2015 Dec 23; doi: 10.1038/ejhg.2015.177

    Google Scholar 

  33. Hoffjan S, Epplen JT, Reis A, Jamra RA (2015) MAN1B1 mutation leads to a recognizable phenotype: a case report and future prospects. Mol Syndromol 6:58–62

    Google Scholar 

  34. Cartault F, Munier P, Jacquemont ML et al. (2015) Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet 23:49–53

    Google Scholar 

  35. Rafaelsen S, Johanssen S, Raeder H, Bjerknes R (2014) Long-term clinical outcome and phenotypic variability in hyperphosphatemic familial tumoral calcinosis and hyperphosphatemic hyperostosis syndrome caused by a novel GALNT3 mutation; case report and review of the literature. BMC Genet Epub 2014 Sept 24; doi: 10.1186/s12863-014-0098-3

    Google Scholar 

  36. Huegel J, Sgariglia F, Enomoto-Inamoto M, Koyama E, Dormans JP, Pacifici M (2013) Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn 242:1021–1032

    Google Scholar 

  37. Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285

    Google Scholar 

  38. Weh E, Reis LM, Tyler RC et al. (2014) Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. Clin Genet 86:142–148

    Google Scholar 

  39. Boccuto L, Aoki K, Flanagan-Steet H et al. (2014) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt and pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23:418–433

    Google Scholar 

  40. Harlalka GV, Lehman A, Chioza B et al. (2013) Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136:3618–3624

    Google Scholar 

  41. Tarailo-Graovac M, Sinclair G, Stöckler-Ipsiroglu S et al. (2015) The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis Epub 2015 10:23

    Google Scholar 

  42. Nishino I, Carrillo-Carrasco N, Argov Z (2015) GNE myopathy: current update and future therapy. J Neurol Neurosurg Psychiatry 86:385–392

    Google Scholar 

  43. Selcen D, Shen X-M, Milone M et al. (2013) GFPT1-myasthenia. Clinical, structural, and electrophysiologic heterogeneity. Neurology 81:370–380

    Google Scholar 

  44. Kara B, Ayhan O, Gökçay G, Basbogaoglu N, Tolun A (2014) Adult phenotype and further phenotypic variability in SRD5A3-CDG. BMC Med Genet 15:10 doi: 10.1186/1471-2350-15-10

    Google Scholar 

  45. Rymen D, Winter J, Van Hasselt PM et al. (2015) Key features and clinical variability of COG6-CDG. Mol Genet Metab 116: 163–170

    Google Scholar 

  46. Fischer B, Dimopoulou A, Egerer J et al. (2012) Further characterization of ATP6V0A2-related autosomal recessive cutis laxa. Hum Genet 131:1761–1773

    Google Scholar 

  47. Tegtmeyer LC, Rust S, van Scherpenzeel M et al. (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–542

    Google Scholar 

  48. Morava E (2014) Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab 112:275–279

    Google Scholar 

  49. Jansen JC, Timal S, van Scherpenzeel M et al. (2016) TMEM199 deficiency is a disorder of golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 98:322–330

    Google Scholar 

  50. Jansen JC, Cirak S, van Scherpenzeel M et al. (2016) CCDC115 deficiency causes a disorder of golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98:310–321

    Google Scholar 

  51. Boycott KM, Beaulieu CL, Kernohan KD et al. (2015) Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet 97:886–893

    Google Scholar 

  52. Park JH, Hogrebe M, Gruneberg M et al. (2015) SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 97:894–903

    Google Scholar 

  53. Enns GM, Shashi V, Bainbridge M et al. (2014) Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum associated degradation pathway. Genet Med 16:751–758

    Google Scholar 

  54. Ng BG, Wolfe LA, Ichikawa M et al (2015) Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet. ;24:3050-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaak Jaeken or Eva Morava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jaeken, J., Morava, E. (2016). Congenital Disorders of Glycosylation, Dolichol and Glycosylphosphatidylinositol Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics