Skip to main content

The Role of Bacterial Polysaccharide Capsules as Virulence Factors

  • Conference paper
Bacterial Capsules

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 150))

Abstract

Carbohydrates are universally present on the surface of living cells. On eukaryotic cells, many different carbohydrates are attached as glycoproteins and glycolipids; the oligosaccharide moieties are known to act as receptors and it seems likely that they play an important role in cell-to-cell recognition processes. Polysaccharide capsules, in prokaryotes characteristically composed of repeating oligosaccharides, are found on the surface of many bacteria. These capsules are typically composed of only one polysaccharide and lie outside the outer membrane of gram-negative cells and the peptidoglycan layer of gram-positive cells. In general, individual bacteria do not exhibit variation of these antigens as has been described for the variant glycoproteins of trypanosomes (Cross1978). Comprising 99% water, these highly hydrated, polyanionic polysaccharide capsules serve many functions. These include determining access of molecules and ions to the bacterial cell envelope and the cytoplasmic membrane, the promotion of adherence to the surfaces of inanimate objects or living cells and the formation of biofilms and microcolonies (Costerton and Irwin1981). Among certain gram-positive and gram-negative bacteria, capsules have evolved distinctive structural and functional characteristics which are of cardinal importance in the pathogenesis of infections of animals, plants and insects (Sutherland1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allan I, Loeb MR, Moxon ER (1987) Limited genetic diversity of Haemophilus influenzae (type b). Microb Pathogen 2: 139–145

    Article  CAS  Google Scholar 

  • Alper C, Abramson N, Johnston RB (1970) Increased susceptibility to infection associated with abnormalities of complement-mediated functions and of the third component of complement (C3). N Engl J Med 282: 349–354

    Article  Google Scholar 

  • Anderson PW, Johnston RB Jr, Smith DH (1972) Human serum activities against Haemophilus influenzae type b. J Clin Invest 51: 31–38

    Article  PubMed  CAS  Google Scholar 

  • Anderson PW, Inzana T, Pichichero M (1985) Surface factors and nasopharyngeal colonization by Hemophilus influenzae B. In: Jackson GG, Thomas H (eds) The pathogenesis of bacterial infections, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Anderson RM, May RM (1982) Population biology of infectious diseases. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Branefors-Helander P, Erbing C, Kenne L, Lindberg B. (1976) Structural studies of the capsular antigen from Haemophilus influenzae type b. Acta Chem. Scand. 30: 276–277

    Article  Google Scholar 

  • Brown EJ, Joiner KA, Gaither TA, Hammer CH, Frank MM (1983) The interaction of C3b bound to pneumococci with factor H (beta 1H globulin), factor I (C3b/C4b inactivator) and properdin factor B of the human complement system. J Immunol 131: 409–415

    PubMed  CAS  Google Scholar 

  • Byrd RA, Egan W, Summers MF (1987) New N.M.R.-spectroscopic approaches for structural studies of polysaccharides: application to the Haemophilus influenzae type a capsular polysaccharide. Carbohydr Res 166: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Catlin BW, Bendler JW III, Goodgal SH (1972) The type b capsulation locus of Haemophilus influenzae: map location and size. J Gen Microbiol 70: 411–422

    PubMed  CAS  Google Scholar 

  • Costerton JW, Irwin RT (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35: 299–324

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GC, Ladd TI, Nickel JC, Dasgupta M, Morrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464

    Article  PubMed  CAS  Google Scholar 

  • Crisel RM, Baker RS, Dorman DE (1975) Capsular polymer of Haemophilus influenzae, type b. I. Structural characterization of the capsular polymer of strain Eagan. J Biol Chem 250:4926–4930

    PubMed  CAS  Google Scholar 

  • Cross GAM (1978) Antigenic variation in trypanosomes. Proc Soc Lond [Biol] 20: 55–72

    Article  Google Scholar 

  • Edwards MS, Nicholson-Weller A, Baker CJ, Kasper DL (1980) The role of specific antibody in alternative complement pathway-mediated opsonophagocytosis of type III, group B Streptococcus. J Exp Med 151: 1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Egan W, Tsui F-P, Climenson PA, Schneerson R (1980 a) Structural and immunological studies of the Haemophilus influenzae type C capsular polysaccharide. Carbohydr. Res. 80: 305–316

    Article  CAS  Google Scholar 

  • Egan W, Tsui F-P, Schneerson R (1980 b) Structural studies of the Haemophilus influenzae type f capsular polysaccharide. Carbohydr Res 79: 271–277

    Article  PubMed  CAS  Google Scholar 

  • Ely S, Tippett J, Moxon ER (1989) Identification and Characterization of a serotype b-specific segment of the Haemophilus influenzae genome. Infect Immun 51: (in press)

    Google Scholar 

  • Fearon DT (1978) Regulation by membrane sialic acid of ß1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci USA 75: 1971–1975

    Article  PubMed  CAS  Google Scholar 

  • Fielder AHL, Walport MJ, Batchelor JR, Rynes RI, Black CM, Dordi IA, Hughes GVR (1983) Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J 286: 425

    Article  CAS  Google Scholar 

  • Finne J (1982) Occurrence of unique polysialosyl carbohydrate units in glycoprotein of developing brain. J Biol Chem 257: 11966–11970

    PubMed  CAS  Google Scholar 

  • Gigliotti F, Insell RA (1983) Protection from infection with Haemophilus influenzae type b by monoclonal antibody to the capsule. J Infect Dis 146: 249–254

    Article  Google Scholar 

  • Gold R (1985) Prevention of bacterial meningitis by immunological means. In: Sande MA, Smith AL, Root RK Bacterial meningitis. Livingstone, Edinburgh, pp 105–122

    Google Scholar 

  • Gotschlich EC, Fraser BA, Nishimura O, Robbins JB, Liu TY (1981) Lipid a capsular polysaccharide of gram-negative bacteria. J Biol Chem 256: 8915–8921

    PubMed  CAS  Google Scholar 

  • Hauptmann G, Goetz J, Uring-Lambert B, Grosshans E (1986) Complement deficiences. II. The fourth component. Prog Allergy 39: 232–249

    PubMed  CAS  Google Scholar 

  • Hoiseth SK, Connelly CJ, Moxon ER (1985) Genetics of spontaneous, high-frequency loss of b capsule expression in Haemophilus influenzae. Infect Immun 49: 389–395

    PubMed  CAS  Google Scholar 

  • Hoiseth SK, Moxon ER, Silver RP (1986) Genes involved in Haemophilus influenzae type b capsule expression are part of an 18-kilobase tandem duplication. Proc Natl Acad Sci USA 83: 1106–1110

    Article  PubMed  CAS  Google Scholar 

  • Hoogerhout P, Evenberg D, van Boeskel CAA, Poolman JT, Beuvery EC, van der Marel GA, van Boom JH (1987) Synthesis of fragments of the capsular polysaccharide of HiTb comprising 2 or 3 repeating units. Tetrahedron Lett 28: 1953–1956

    Article  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest 65: 82–94

    Article  PubMed  CAS  Google Scholar 

  • Kasper DL (1986) Bacterial capsule — old dogmas and new tricks. J Infect Dis 153: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Kroll JS, Moxon ER (1988) Capsulation and gene copy — number at the cap locus of Haemophilus influenzae type b. J Bacteriol 170: 859–864

    PubMed  CAS  Google Scholar 

  • Kroll JS, Hopkins I, Moxon ER (1988) Capsule loss in Haemophilus influenzae type b occurs by recombination-mediated disruption of a gene essential for polysaccharide export. Cell 53: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Kuo JS-C, Doelling VW, Graveline JF, McCoy DW (1985) Evidence for covalent attachment of phospholipid to the capsular polysaccharide of Haemophilus influenzae type b. J Bacteriol 163: 769–773

    PubMed  CAS  Google Scholar 

  • Law SKA, Dodds AW, Porter RR (1984) A comparison of the properties of two classes, C4A and C4B, of the human complement component C4. EMBO J 3: 1819–1823

    PubMed  CAS  Google Scholar 

  • Lifely MR, Moreno C, Lindon JC (1987) An integrated molecular and immunological approach towards a meningococcal group B vaccine. Vaccine 5: 11–26

    Article  PubMed  CAS  Google Scholar 

  • Lipuma JJ, Gilsdorf JR (1987) Role of capsule in adherence of Haemophilus influenzae type b to human buccal epithelial cells. Infect Immun 55: 2308–2310

    PubMed  CAS  Google Scholar 

  • Marcus RL, Shin HS, Mayer MM (1971) An alternate complement pathway: C3 clearing activity not due to C4 2a on endotoxic lipopolysaccharide after treatment with guinea pig serum: relation to properdin (complement components). Proc Natl Acad Sci USA 68: 1351

    Article  PubMed  CAS  Google Scholar 

  • Moxon ER (1986) The carrier state: Haemophilus influenzae. J Antimicrob Chemother 18A 17–24

    Google Scholar 

  • Moxon ER, Murphy PA (1978) Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc Natl Acad Sci USA 75: 1534–1536

    Article  PubMed  CAS  Google Scholar 

  • Moxon ER, Vaughn KA (1981) The type b capsular polysaccharide as a virulence determinant of Haemophilus influenzae: studies using clinical isolates and laboratory transformants. J Infect Dis 143: 517–534

    Article  PubMed  CAS  Google Scholar 

  • Moxon ER, Winkelstein JA (1988) Interaction of Haemophilus influenzae with complement. In: Cabello FC, Pruzzo C (eds) Bacteria, complement and the plagocytic cell. Springer Verlag Berlin Heidelberg New York Tokyo, pp 177–186

    Google Scholar 

  • Musser JM, Granoff DM, Pattison PE, Selander RK (1985) A population genetic framework for the study of invasive diseases caused by serotype b strains of Haemophilus influenzae. Proc Natl Acad Sci USA 82: 5078–5082

    Article  PubMed  CAS  Google Scholar 

  • Musser JM, Kroll JS, Moxon ER, Selander RK (1988) Clonal population structure of encapsulated Haemophilus influenzae. Infect Immun 56 : 1837–1845

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1977) Human complement C3b inactivator. Isolation, characterization and demonstration of an absolute requirement for serum protein ß1H for cleavage of C3b and C4b in isolation. J Exp Med 146: 257

    Article  PubMed  CAS  Google Scholar 

  • Petersdorf RG, Luttrell CN (1962) Studies on the pathogenesis of meningitis. I. Intrathecal injection. J Clin Invest 41: 311–319

    Article  PubMed  CAS  Google Scholar 

  • Pittman M (1931) Variation and type specificity in the bacterial species Haemophilus influenzae. J Exp Med 53:471–493

    Article  PubMed  CAS  Google Scholar 

  • Ponder E (1928) The physical factors involved in phagocytosis. Protoplasma 3: 611

    Article  Google Scholar 

  • Quinn P, Crosson FJ, Winkelstein J, Moxon ER (1977) Activation of the alternative complement pathway by H. influenzae type b. Infect Immun 16: 400–402

    PubMed  CAS  Google Scholar 

  • Robbins JB (1978) Vaccines for the prevention of encapsulated bacterial diseases : current status, problems and prospects for the future. Immunochemistry 15: 839–854

    Article  PubMed  CAS  Google Scholar 

  • Rosenow EC (1907) Human pneumococcal opsonin and the antiopsonic substance in virulent pneumococci. J Infect Dis 4: 285

    Article  Google Scholar 

  • Rubin LG, Moxon ER (1983) Pathogenesis of bloodstream invasion with Haemophilus influenzae type b. Infect Immun 41: 280–284

    PubMed  CAS  Google Scholar 

  • Rubin LG, Zwahlen A, Moxon ER (1985) Role of intravascular replication in the pathogenesis of experimental bacteremia due to Haemophilus influenzae type b. J Infect Dis 152: 307–314

    Article  PubMed  CAS  Google Scholar 

  • Santosham M, Moxon ER (1977) Detection and quantitation of bacteremia in childhood. J Pediatr 91: 719–721

    Article  PubMed  CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51: 873–884

    PubMed  CAS  Google Scholar 

  • Steele NP, Munson RS Jr, Granoff DM et al. (1984) Antibody-dependent alternative pathway killing of Haemophilus influenzae type b. Infect Immun 44: 452–458

    PubMed  CAS  Google Scholar 

  • Stephens DS, Hoffman LH, McGee ZA (1983) Interaction of Neisseria meningitidis with human nasopharyngeal mucosa : attachment and entry into columnar epithelial cells. J Infect Dis 148: 369–376

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1977) Bacterial exopolysaccharides — their nature and production. In: Sutherland IW (ed) Surface Carbohydrates of the Procaryotic cell. Academic, London

    Google Scholar 

  • Swift AJ, Moxon ER, Zwahlen A, Winkelstein JA (1988) Complement-mediated serum activities against isogenic capsular transformants of Haemophilus influenzae. Pediatr Res (submitted)

    Google Scholar 

  • Tarr PI, Hosea SW, Brown EJ et al. (1982) The requirement of specific anticapsular IgG for killing of Haemophilus influenzae by an alternative pathway of complement activation. J Immunol 120: 1772–1775

    Google Scholar 

  • Toews GB, Vial WC, Hansen EJ (1985) Role of C5 and recruited neutrophils in early clearance of nontypable Haemophilus influenzae from murine lungs. Infect Immun 50: 207–212

    PubMed  CAS  Google Scholar 

  • Tsui F-P, Schneerson R, Boykins RA, Karpas AB, Egan W (1981 a) Structural and immunological studies of the Haemophilus influenzae type d capsular polysaccharide. Carbohydr Res 97: 293 to 306

    Article  PubMed  CAS  Google Scholar 

  • Tsui F-P, Schneerson R, Egan W (1981 b) Structural studies of the Haemophilus influenzae type e capsular polysaccharide. Carbohydr Res 88: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Turk DC (1982) Clinical importance of Haemophilus influenzae — 1981. In: Sell SH, Wright PE (eds) Haemophilus influenzae. Elsevier, New York, pp 19

    Google Scholar 

  • Van Oss, CJ, Gillman CF (1973) Phagocytosis as a surface phenomenon : influence of C1423 on the contact angle and on the phagocytosis of sensitized encapsulated bacteria. Immunol Commun 2: 415

    PubMed  Google Scholar 

  • Weller PF, Smith AL, Anderson P, Smith DH (1977) The role of encapsulation and host age in the clearance of Haemophilus influenzae bacteremia. J Infect Dis 135: 34–41

    Article  PubMed  CAS  Google Scholar 

  • White B (1938) Antibodies to pneumococcus. In: White B, Robinson ES, Barnes LA (eds) The Biology of pneumococcus. Harvard University Press, Cambridge, pp 355–426

    Google Scholar 

  • Winkelstein JA (1981) The role of complement in the host’s defence against Streptococcus pneumoniae. Rev Infect Dis 3: 289

    Article  PubMed  CAS  Google Scholar 

  • Winkelstein JA, Tomasz A (1978) Activation of the alternative pathway by pneumococcal cell wall teichoic acid. J Immunol 120: 174

    PubMed  CAS  Google Scholar 

  • Zwahlen A, Rubin LG, Moxon ER (1986) Contribution of lipopolysaccharide to pathogenicity of Haemophilus influenzae: comparative virulence of genetically-related strains in rats. Microb Pathogen 1: 465–473

    Article  CAS  Google Scholar 

  • Zwahlen A, Kroll JS, Rubin LG, Moxon ER (1989) The molecular basis of pathogenicity in Haemophilus influenzae: Comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microbiol Pathogen (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moxon, E.R., Kroll, J.S. (1990). The Role of Bacterial Polysaccharide Capsules as Virulence Factors. In: Jann, K., Jann, B. (eds) Bacterial Capsules. Current Topics in Microbiology and Immunology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74694-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74694-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74696-3

  • Online ISBN: 978-3-642-74694-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics