Skip to main content

Motoneuron Disease

  • Chapter
  • First Online:
Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) represent the two major forms of motoneuron disease. In both forms of disease, spinal and bulbar motoneurons become dysfunctional and degenerate. In ALS, cortical motoneurons are also affected, which contributes to the clinical phenotype. The gene defects for most familial forms of ALS and SMA have been discovered and they point to a broad spectrum of disease mechanisms, including defects in RNA processing, pathological protein aggregation, altered apoptotic signaling, and disturbed energy metabolism. Despite the fact that lack of neurotrophic factors or their corresponding receptors are not found as genetic cause of motoneuron disease, signaling pathways initiated by neurotrophic factors for motoneuron survival, axon growth, presynaptic development, and synaptic function are disturbed in ALS and SMA. Better understanding of how neurotrophic factors and downstream signaling pathways interfere with these disease mechanisms could help to develop new therapies for motoneuron disease and other neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann B et al (2013) Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. Hum Mol Genet 22(7):1328–1347

    PubMed  CAS  Google Scholar 

  • Al-Chalabi A et al (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352

    PubMed  CAS  Google Scholar 

  • Al-Sarraj S et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702

    PubMed  CAS  Google Scholar 

  • Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615

    PubMed  CAS  Google Scholar 

  • Arakawa Y, Sendtner M, Thoenen H (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 10:3507–3515

    PubMed  CAS  Google Scholar 

  • Ash PE et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77(4):639–646

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    PubMed  CAS  Google Scholar 

  • Ayala YM, Misteli T, Baralle FE (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A 105:3785–3789

    PubMed Central  PubMed  CAS  Google Scholar 

  • Azzouz M et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417, 1995 Sep 28; 377(6547):340–344

    PubMed  CAS  Google Scholar 

  • Baloh RH et al (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21:1291–1302

    PubMed  CAS  Google Scholar 

  • Boillee S et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    PubMed  CAS  Google Scholar 

  • Bommel H et al (2002) Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J Cell Biol 159:563–569

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343

    PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2010) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30:277–288

    PubMed Central  PubMed  Google Scholar 

  • Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2010a) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7(4):420–429

    PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2010b) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30: 277–288

    PubMed Central  PubMed  Google Scholar 

  • Buratti E et al (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buratti E et al (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280:37572–37584

    PubMed  CAS  Google Scholar 

  • Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53

    PubMed  CAS  Google Scholar 

  • Caroni P (1997) Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bioessays 19:767–775

    PubMed  CAS  Google Scholar 

  • Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384

    PubMed  CAS  Google Scholar 

  • Chan YB et al (2003) Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 12:1367–1376

    PubMed  CAS  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    PubMed  CAS  Google Scholar 

  • Chen YZ et al (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74(6):1128–1135

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24:438–442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chow CY et al (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84(1):85–88

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clement AM et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    PubMed  CAS  Google Scholar 

  • Colombrita C et al (2009) TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 111:1051–1061

    PubMed  CAS  Google Scholar 

  • Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110

    PubMed  CAS  Google Scholar 

  • Damiano M et al (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96:1349–1361

    PubMed  CAS  Google Scholar 

  • De Vos KJ et al (2007) Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 16:2720–2728

    PubMed  Google Scholar 

  • DeJesus-Hernandez M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deng HX et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477(7363):211–215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dewey CM et al (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31:1098–1108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:637–648

    PubMed  Google Scholar 

  • Dormann D et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857

    PubMed Central  PubMed  CAS  Google Scholar 

  • Drepper C, Sendtner M (2011) A new postal code for dendritic mRNA transport in neurons. EMBO Rep 12:614–616

    PubMed Central  PubMed  CAS  Google Scholar 

  • Drepper C, Herrmann T, Wessig C, Beck M, Sendtner M (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging 32(3):548.e1–4

    Google Scholar 

  • Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56:523–530

    PubMed  CAS  Google Scholar 

  • Elden AC et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  • Elson GC et al (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 3:867–872

    PubMed  CAS  Google Scholar 

  • Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630

    PubMed  CAS  Google Scholar 

  • Fiesel FC et al (2010) Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 29:209–221

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64

    PubMed Central  PubMed  CAS  Google Scholar 

  • Frade JM, RodriguezTebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    PubMed  CAS  Google Scholar 

  • Fratta P et al (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2:1016

    PubMed Central  PubMed  Google Scholar 

  • Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120

    PubMed Central  PubMed  CAS  Google Scholar 

  • Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan J (1997) Inhibition of ICE slows ALS in mice. Nature 388:31

    PubMed  CAS  Google Scholar 

  • Gavrilina TO et al (2008) Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum Mol Genet 17:1063–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giess R et al (2002) Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am J Hum Genet 70:1277–1286

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glinka M et al (2010) The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons. Hum Mol Genet 19:1951–1966

    PubMed  CAS  Google Scholar 

  • Gogliotti RG et al (2012) Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 32:3818–3829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gravel C, Götz R, Lorrain A, Sendtner M (1997) Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to longterm survival of axotomized motoneurons. Nat Med 3:765–770

    PubMed  CAS  Google Scholar 

  • Greenway MJ et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38(4):411–413

    PubMed  CAS  Google Scholar 

  • Grieshammer U et al (1998) Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss Neuronal cell death. Neuron 20:633–647

    Google Scholar 

  • Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47:165–174

    PubMed  CAS  Google Scholar 

  • Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51–56

    PubMed  CAS  Google Scholar 

  • Gurney ME et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    PubMed  CAS  Google Scholar 

  • Hadano S et al (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29(2):166–173

    PubMed  CAS  Google Scholar 

  • Hamburger V (1934) The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 68:449–494

    Google Scholar 

  • Hamburger V (1975) Cell death in the development of the lateral column of the chick embryo. J Comp Neurol 160:535–546

    PubMed  CAS  Google Scholar 

  • Hand CK et al (2002) A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet 70(1):251–256

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haramati S et al (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107:13111–13116

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harraz MM et al (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118:659–670

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hausmanowa-Petrusewicz I (1978) In: Spinal muscular atrophy: infantile and juvenile type. National Library of Medicine & The National Science Foundation, Washington DC

    Google Scholar 

  • Henderson CE et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064

    PubMed  CAS  Google Scholar 

  • Higashi S et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294

    PubMed  CAS  Google Scholar 

  • Holtmann B et al (2005) Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J Neurosci 25:1778–1787

    PubMed  CAS  Google Scholar 

  • Hu F et al (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–667

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hughes RA, Sendtner M, Goldfarb M, Lindholm D, Thoenen H (1993a) Evidence that fibroblast growth factor 5 is a major muscle derived survival factor for cultured spinal motoneurons. Neuron 10:369–377

    PubMed  CAS  Google Scholar 

  • Hughes RA, Sendtner M, Thoenen H (1993b) Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J Neurosci Res 36(6):663–671

    PubMed  CAS  Google Scholar 

  • Imlach WL et al (2012) SMN is required for sensory-motor circuit function in Drosophila. Cell 151:427–439

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N (2011) Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 69:152–162

    PubMed  CAS  Google Scholar 

  • Jablonka S, Beck M, Lechner BD, Mayer C, Sendtner M (2007) Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J Cell Biol 179:139–149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson JO et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68(5):857–864

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kabashi E et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574

    PubMed  CAS  Google Scholar 

  • Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463

    PubMed  CAS  Google Scholar 

  • Kerkhoff H, Jennekens FGI, Troost D, Veldman H (1991) Nerve growth factor receptor immunostaining in the spinal cord and peripheral nerves in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 81:649–656

    CAS  Google Scholar 

  • Kiebler MA, Bassell GJ (2006) Neuronal RNA granules: movers and makers. Neuron 51:685–690

    PubMed  CAS  Google Scholar 

  • Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    PubMed  CAS  Google Scholar 

  • Klein RD et al (1997) A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387:717–721

    PubMed  CAS  Google Scholar 

  • Kong L et al (2009) Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29:842–851

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S (1997) Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277:559–562

    PubMed  CAS  Google Scholar 

  • Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363–371

    PubMed  CAS  Google Scholar 

  • Kuroda M et al (2000) Male sterility and enhanced radiation sensitivity in TLS(-/-) mice. EMBO J 19:453–462

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kwiatkowski TJ Jr et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    PubMed  CAS  Google Scholar 

  • Leibrock J et al (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152

    PubMed  CAS  Google Scholar 

  • Ling SC et al (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107:13318–13323

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Ernfors P, Wu H, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375:238–241

    PubMed  CAS  Google Scholar 

  • Lotti F et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151:440–454

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luty AA et al (2010) Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann Neurol 68(5):639–649

    PubMed  CAS  Google Scholar 

  • Mackenzie IRA, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007

    PubMed  CAS  Google Scholar 

  • Maekawa S et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29:672–683

    PubMed  Google Scholar 

  • Maruyama H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465(7295):223–226

    PubMed  CAS  Google Scholar 

  • McDonald KK et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410

    PubMed  CAS  Google Scholar 

  • McGovern VL, Gavrilina TO, Beattie CE, Burghes AH (2008) Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 17:2900–2909

    PubMed Central  PubMed  CAS  Google Scholar 

  • McWhorter ML, Monani UR, Burghes AH, Beattie CE (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 162:919–931

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mentis GZ et al (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    PubMed  CAS  Google Scholar 

  • Milbrandt J et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253

    PubMed  CAS  Google Scholar 

  • Moisse K et al (2009a) Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res 1249:202–211

    PubMed  CAS  Google Scholar 

  • Moisse K et al (2009b) Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res 1296:176–186

    PubMed  CAS  Google Scholar 

  • Monani UR et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy [In Process Citation]. Hum Mol Genet 9:333–339

    PubMed  CAS  Google Scholar 

  • Mori K et al (2013a) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125(3):413–423

    PubMed  CAS  Google Scholar 

  • Mori K et al (2013b) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–1338

    PubMed  CAS  Google Scholar 

  • Morlando M et al (2012) FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J 31:4502–4510

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20:5443–5452

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nagai M et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neumann M et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    PubMed  CAS  Google Scholar 

  • Ning K et al (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 19:3159–3168

    PubMed  CAS  Google Scholar 

  • Nishihira Y et al (2009) Sporadic amyotrophic lateral sclerosis of long duration is associated with relatively mild TDP-43 pathology. Acta Neuropathol 117:45–53

    PubMed  CAS  Google Scholar 

  • Nishimura AL et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75(5):822–831

    PubMed Central  PubMed  CAS  Google Scholar 

  • Novak KD, Prevette D, Wang S, Gould TW, Oppenheim RW (2000) Hepatocyte growth factor/scatter factor is a neurotrophic survival factor for lumbar but not for other somatic motoneurons in the chick embryo. J Neurosci 20:326–337

    PubMed  CAS  Google Scholar 

  • Oppenheim RW (1985) Naturally occuring cell death during neural development. Trends Neurosci 8:487–493

    Google Scholar 

  • Oppenheim RW et al (2000) Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci 20:5001–5011

    PubMed  CAS  Google Scholar 

  • Oppenheim RW et al (2001) Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J Neurosci 21:1283–1291

    PubMed  CAS  Google Scholar 

  • Oprea GE et al (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524–527

    PubMed  CAS  Google Scholar 

  • Orlacchio A et al (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133(Pt 2):591–598

    PubMed Central  PubMed  Google Scholar 

  • Parkinson N et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67(6):1074–1077

    PubMed  CAS  Google Scholar 

  • Pascale A, Govoni S (2012) The complex world of post-transcriptional mechanisms: is their deregulation a common link for diseases? Focus on ELAV-like RNA-binding proteins. Cell Mol Life Sci 69:501–517

    PubMed  CAS  Google Scholar 

  • Pasinelli P et al (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43:19–30

    PubMed  CAS  Google Scholar 

  • Pellizzoni L (2007) Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep 8:340–345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pennica D et al (1996) Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17:63–74

    PubMed  CAS  Google Scholar 

  • Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18:R156–R162

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pesiridis GS, Tripathy K, Tanik S, Trojanowski JQ, Lee VM (2011) A “two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 286:18845–18855

    PubMed Central  PubMed  CAS  Google Scholar 

  • Plachta N et al (2007) Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10:712–719

    PubMed  CAS  Google Scholar 

  • Poesen K et al (2008) Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration. J Neurosci 28:10451–10459

    PubMed  CAS  Google Scholar 

  • Polymenidou M et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14(4):459–468

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    PubMed  CAS  Google Scholar 

  • Rayaprolu S et al (2012) Angiogenin variation and Parkinson disease. Ann Neurol 71(5):725–727; author reply 727–728

    Google Scholar 

  • Reaume AG et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    PubMed  CAS  Google Scholar 

  • Renton AE et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Riethmacher D et al (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389:725–730

    PubMed  CAS  Google Scholar 

  • Rosen DR et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  • Rossoll W et al (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11:93–105

    PubMed  CAS  Google Scholar 

  • Rossoll W et al (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruiz R, Casanas JJ, Torres-Benito L, Cano R, Tabares L (2010) Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 30:849–857

    PubMed  CAS  Google Scholar 

  • Rutherford NJ et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193

    PubMed Central  PubMed  Google Scholar 

  • Sagot Y, Tan SA, Hammang JP, Aebischer P, Kato AC (1996a) GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice. J Neurosci 16:2335–2341

    PubMed  CAS  Google Scholar 

  • Sagot Y et al (1996b) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 11:7727–7733

    Google Scholar 

  • Sapp PC et al (2003) Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 73(2):397–403

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schrank B et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94:9920–9925

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165

    PubMed  Google Scholar 

  • Seeburger JL, Tarras S, Natter H, Springer JE (1993) Spinal cord motoneurons express p75 NGFR and p145 trkB mRNA in amyotrophic lateral sclerosis. Brain Res 621:111–115

    PubMed  CAS  Google Scholar 

  • Selvaraj BT, Frank N, Bender FL, Asan E, Sendtner M (2012) Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. J Cell Biol 199:437–451

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sendtner M (2001) Molecular mechanisms in spinal muscular atrophy: models and perspectives. Curr Opin Neurol 14:629–634

    PubMed  CAS  Google Scholar 

  • Sendtner M (2010) Therapy development in spinal muscular atrophy. Nat Neurosci 13:795–799

    PubMed  CAS  Google Scholar 

  • Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345:440–441

    PubMed  CAS  Google Scholar 

  • Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992a) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–758, 1995 Sep 28; 377(6547):340–344

    PubMed  CAS  Google Scholar 

  • Sendtner M et al (1992b) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358:502–504

    PubMed  CAS  Google Scholar 

  • Sephton CF et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simon CM, Jablonka S, Ruiz R, Tabares L, Sendtner M (2010) Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Hum Mol Genet 19:973–986

    PubMed  CAS  Google Scholar 

  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62:1758–1765

    PubMed  CAS  Google Scholar 

  • Singh KK et al (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    PubMed  CAS  Google Scholar 

  • Smith RG, Henry YK, Mattson MP, Appel SH (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44:696–699

    PubMed  CAS  Google Scholar 

  • Sreedharan J et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672

    PubMed  CAS  Google Scholar 

  • Stockli KA et al (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342:920–923

    PubMed  CAS  Google Scholar 

  • Strong MJ et al (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35:320–327

    PubMed  CAS  Google Scholar 

  • Subramanian M et al (2011) G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep 12:697–704

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5(Suppl):1046–1050

    PubMed  CAS  Google Scholar 

  • Tollervey JR et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458

    PubMed Central  PubMed  CAS  Google Scholar 

  • Torres-Benito L, Ruiz R, Tabares L (2012) Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol 72:126–133

    PubMed  CAS  Google Scholar 

  • Urushitani M et al (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118

    PubMed  CAS  Google Scholar 

  • Van Damme P et al (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci U S A 104:14825–14830

    PubMed Central  PubMed  Google Scholar 

  • Vance C et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

    PubMed  CAS  Google Scholar 

  • Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ (2009) Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305:168–182

    PubMed  CAS  Google Scholar 

  • Wang IF, Reddy NM, Shen CK (2002) Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 99:13583–13588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wegorzewska I, Baloh RH (2011) TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis 8:262–274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weidner KM et al (1991) Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A 88:7001–7005

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    PubMed  CAS  Google Scholar 

  • Wong PC et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    PubMed  CAS  Google Scholar 

  • Wood-Allum C, Shaw PJ (2010) Motor neurone disease: a practical update on diagnosis and management. Clin Med 10:252–258

    PubMed  Google Scholar 

  • Wu CH et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamamoto Y et al (1997) Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development 124:2903–2913

    PubMed  CAS  Google Scholar 

  • Yamazaki T et al (2012) FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2:799–806

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zinszner H, Albalat R, Ron D (1994) A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 8:2513–2526

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sendtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Sendtner, M. (2014). Motoneuron Disease. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_15

Download citation

Publish with us

Policies and ethics