Skip to main content

HemaCAM – A Computer Assisted Microscopy System for Hematology

  • Chapter
  • First Online:
Microelectronic Systems

Abstract

Cost and competition force modern hematology laboratories to further automate their processes. To that respect the examination and analysis of the peripheral blood is of central importance as it is relevant to a large variety of diseases while on the other hand financial reimbursement is low. Over the past eight years, the HemaCAM system has been developed by the Fraunhofer IIS, which supports the assessment of peripheral blood samples and the so-called white blood differential. Since 2010, HemaCAM has been available on the market as a certified medical product, to be more specific as an in vitro diagnostic device. This contribution provides an overview of the key components of the HemaCAM system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergen T, Steckhan D, Wittenberg T, Zerfaß T (2008) Segmentation of leukocytes and erythrocytes in blood smear images. In: Proc's IEEE Eng Med Biol Soc, pp 3075–3078

    Google Scholar 

  2. Dorini L, Minetto R, Leite N (2007) White blood cell segmentation using morphological operators and scale-space analysis. In: Proc's XX Braz Symp on Comp Graphics & Image Processing, pp 294–304

    Google Scholar 

  3. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: A view from stanford. Clincial Chemistry 48(10):1819–1827

    Article  Google Scholar 

  4. Jiang K, Liao QM, Dai SY (2003) A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proc's 2nd Int. Conf. on Machine Learning & Cybernetics, pp 2820–2825. 2.-5.11.2003, Xi'an

    Google Scholar 

  5. Lee S (2005) Virtual microscopy:applications to hematology. Lab Hematol 11(1):38–45

    Article  Google Scholar 

  6. Liao Q, Deng Y (2002) An accurate segmentation method for white blood cell images. In: IEEE Int Symposium on Biomedical Imaging (ISBI), pp 245–248

    Google Scholar 

  7. Rupp S, Schlarb T, Haßlmeyer E, Zerfaß T (2011) Fully automated detection of the counting area in blood smears for computer aided hematology. In: Proc's IEEE Eng Med Biol Soc, vol 2011, p. accepted

    Google Scholar 

  8. Steckhan D, Bergen T, Wittenberg T, Rupp S (2008) Efficient large scale image stitching for virtual microscopy. In: Proc's 30th IEEE Int Conf of the Engingeering in Medicine & Biology Society EMBS 2008, pp 4019–4023

    Google Scholar 

  9. Steckhan D, Paulus D (2010) A quadratic programming approach for the mosaicing of virtual slides that incorporates the positioning accuracy of the microscope stage. Proc's IEEE Eng Med Biol Soc 1:72–7

    Google Scholar 

  10. Steckhan D, Wittenberg T (2009) Optimized graph-based mosaicking for virtual microscopy. In: Proc's SPIE Medical Imaging 2009, vol 7259, Orlando, FL, USA

    Google Scholar 

  11. Tatsumi N, Pierre RV (2002) Automated image processing: Past, present, and future of blood cell morphology identification. Clinics in Laboratory Medicine 22(1):299–315

    Article  Google Scholar 

  12. Wittenberg T, Kuziela H, Mues-Hinterwäller S, Münzenmayer C, Couronné R (2005) Active Computer Vision: A necessary Paradigm for Computer Assisted Diagnosis. In: Kalender W, Hahn E, Schulte A (eds) Proc's ICMP 2005 & BMT 2005, Biomed Tech, 50(1):294–296, Int Workshop

    Google Scholar 

  13. Wu HC (2007) The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research 176(1):46–59

    Article  MathSciNet  Google Scholar 

  14. Zerfaß T, Haßlmeyer E, Schlarb T, Elter M (2010) Segmentation of leukocyte cells in bone marrow smears. In: Proc's 23nd IEEE Int. Symp. on Computer-Based Medical Systems CMBS 2010

    Google Scholar 

  15. Zerfaß T, Rehn T, Wittenberg T (2008) Boundary precise segmentation of nucleus and plasma of leukocytes. SPIE Medical Imaging 2008: Image Processing 6914,69,143Q

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Münzenmayer , Timo Schlarb , Dirk Steckhan , Erik Haßlmeyer , Tobias Bergen , Stefan Aschenbrenner , Thomas Wittenberg , Christian Weigand or Thorsten Zerfaß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Münzenmayer, C. et al. (2011). HemaCAM – A Computer Assisted Microscopy System for Hematology. In: Heuberger, A., Elst, G., Hanke, R. (eds) Microelectronic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23071-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23071-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23070-7

  • Online ISBN: 978-3-642-23071-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics