Skip to main content

Abstract

The class Chondrichthyes or cartilaginous fishes comprises about 800 species belonging to two major radiations that have diverged over 350 million years ago, i. e. the elasmobranchs and the holocephalians (Compagno 1977; Carroll 1988). Fossil evidence suggests that living holocephalians are a much older form than modern elasmobranchs, which arose approximately 200 million years ago (Carroll 1988). The living elasmobranchs (sharks, skates and rays) comprise four major superorders: Squalomorphii, Galeomorphii, Squatinomorphii and Batoidea (Table 12.1). The elasmobranchs are widely distributed, as they are marine in habitat, except for one species, Carcharinus leucas, which lives in Lake Nicaragua and in estuaries of large rivers, such as the Ganges, the Mississippi and the Zambesi. There are about 350 described living species of sharks, ranging in size from the giant whale shark (up to 15 m long) and basking shark (up to 10 m long) to tiny ones such as Squaliolus laticaudus, which in adulthood measures 15 cm in length. Paradoxically, the largest sharks mentioned above are plankton feeders and quite harmless. Of the 350 species of living sharks, no more than 35 have been implicated in attacks on humans (Gilbert 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Addens JL (1933) The motor nuclei and roots of the cranial and first spinal nerves of vertebrates. I. Introduction and cylcostomes. Z Anat Entw Gesch 101:307–410

    Google Scholar 

  • Addens JL (1945) The nucleus of Bellonci and adjacent cell groups in Selachians. I. The ganglion habenulae and its connections. Proc Kon Ned Akad Wet Amsterdam 48:345–359

    Google Scholar 

  • Akoev G, Andrianov GN, Szabo T, Bromm B (1991) Neuropharmacological analysis of synaptic transmission in the Lorenzinian ampulla of the skate Raja clavata. J Comp Physiol [A] 168:639–646

    CAS  Google Scholar 

  • Alvarez R, Anadón R (1987) The cerebellum of the dogfish, Scyliorhinus canicula: a quantitative study. J Hirnforsch 28:133–137

    CAS  PubMed  Google Scholar 

  • Alvarez-Otero R, Anadón R (1992) Golgi cells of the cerebellum of the dogfish, Scyliorhinus canicula (elasmobranchs): a Golgi and ultrastructural study. J Hirnforsch 33:321–327

    CAS  PubMed  Google Scholar 

  • Alvarez-Otero R, Regueira SD, Anadón R (1993) New structural aspects of the synaptic contacts on Purkinje cells in an elasmobranch cerebellum. J Anat 182:13–21

    PubMed  Google Scholar 

  • Andres KH (1970) Anatomy and ultrastructure of the olfactory bulb in fish, amphibia, reptiles, birds and mammals. In: Wolstenholm GEW, Knight J (eds) Taste and smell in vertebrates. Churchill, London, pp 177–196 (Ciba Foundation symposia)

    Google Scholar 

  • Andres KH (1975) Neue morphologische Grundlagen zur Physiologie des Riechens und Schmeckens. Arch Otorhinolaryngol 210:1–41

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU (1921) Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen, part 2. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1947) Anatomie comparée du système nerveux. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU, Carpenter FW (1911) Das Gehirn von Chimaera monstrosa. Folia Neurobiol 5:127–160

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New York

    Google Scholar 

  • Bäckström K (1924) Contributions to the forebrain morphology in selachians. Acta Zool 5:123–240

    Google Scholar 

  • Balfour FM (1878) A monograph on the development of elasmobranch fishes. MacMillan, London

    Google Scholar 

  • Ball JN, Baker BI (1969) The pituitary gland: anatomy and histophysiology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 2. Academic, New York, pp 1–111

    Google Scholar 

  • Ballard WW, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267:318–336

    Google Scholar 

  • Barber VC, Yake KI, Clark VF, Pungur J (1985) Quantitative analyses of sex and size differences in the macula neglecta and ramus neglectus in the inner ear of the skate, Raja ocellata. Cell Tissue Res 241:597–605

    Google Scholar 

  • Bargmann W (1953) Ãœber das Zwischenhirn-Hypophysensystem von Fischen. Z Zellforsch 38:275–298

    CAS  PubMed  Google Scholar 

  • Baron VD, Brown GR, Mikhailenko NA, Orlov AA (1985) About the ordinary skates electrolocation function (in Russian). Dokl Acad Sci USSR 280:240–243

    Google Scholar 

  • Barrett DJ, Taylor EW (1985a) Spontaneous efferent activity in branches of the vagus nerve controlling ventilation and heart rate in the dogfish. J Exp Biol 117:433–448

    CAS  PubMed  Google Scholar 

  • Barrett DJ, Taylor EW (1985b) The location of cardiac vagal preganglionic neurones in the brain stem of the dogfish Scyliorhinus canicula. J Exp Biol 117:449–458

    CAS  PubMed  Google Scholar 

  • Barrett DJ, Taylor EW (1985c) The characteristics of cardial vagal preganglionic motoneurones in the dogfish. J Exp Biol 117:459–470

    CAS  PubMed  Google Scholar 

  • Barry MA (1987a) Central connections of the IXth and Xth cranial nerves in the clearnose skate, Raja eglanteria. Brain Res 425:159–166

    CAS  PubMed  Google Scholar 

  • Barry MA (1987b) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J Comp Neurol 266:457–477

    CAS  PubMed  Google Scholar 

  • Barry MA, Boord RL (1984) The spiracular organ of sharks and skates: Anatomical evidence indicating a mechanoreceptive role. Science 226:990–992

    CAS  PubMed  Google Scholar 

  • Barry MA, Hall DH, Bennett MVL (1988a) The elasmobranch spiracular organ. I. Morphological studies. J Comp Physiol [A] 163:85–92

    CAS  Google Scholar 

  • Barry MA, White RL, Bennett MVL (1988b) The elasmobranch spiracular organ. II. Physiological studies. J Comp Physiol [A] 163:93–98

    CAS  Google Scholar 

  • Bauchot R, Platel R, Ridet J-M (1976) Brain-body weight relationships in Selachii. Copeia 1976:305–309

    Google Scholar 

  • Beard J (1896) The history of a transient nervous apparatus in certain Ichthyopsida. An account of the development and degeneration of ganglion cells and nerve-fibres. I. Raja batis. Zool Jahrb 9:319–426

    Google Scholar 

  • Belbenoit P, Bauer R (1972) Video recordings of prey capture behaviour and associated electric organ discharge of Torpedo Marmorata. Marine Biol 17:93–99

    Google Scholar 

  • Bennett MVL (1968) Neural control of electric organs. In: Ingle D (ed) The central nervous system and fish behaviour. University Press, Chicago, pp 147–169

    Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, New York, pp 347–491

    Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304

    Google Scholar 

  • Bern HA (1969) Urophysis and caudal neurosecretory system. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 2. Academic, New York, pp 399–416

    Google Scholar 

  • Bern HA, Gunther R, Johnson DW, Nishioka RS (1973) Occurrence of urotensin II (bladder-contracting activity) in the caudal spinal cord of anamniote vertebrates. Acta Zool 15:15–19

    Google Scholar 

  • Bernau NA, Puzdrowski RL, Leonard RB (1991) Identification of the midbrain locomotor region and its relation to descending locomotor pathways in the Atlantic stingray, Dasyatis sabina. Brain Res 557:83–94

    CAS  PubMed  Google Scholar 

  • Bleckmann H, Bullock TH, Jorgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol [A] 161:67–84

    CAS  Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol [A] 164:459–474

    CAS  Google Scholar 

  • Bodznick D (1990) Elasmobranch vision: multimodal integration in the brain. J Exp Zool [Suppl] 5:108–116

    CAS  Google Scholar 

  • Bodznick D, Montgomery JC (1992) Suppression of ventilatory reafference in the elasmobranch electrosensory system: medullary neuron receptive fields support a common mode rejection mechanism. J Exp Biol 171:127–137

    Google Scholar 

  • Bodznick D, Northcutt RG (1980) Segregation of electro-and mechanoreceptive inputs to the elasmobranch medulla. Brain Res 195:313–321

    CAS  PubMed  Google Scholar 

  • Bodznick D, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res 298:117–124

    CAS  PubMed  Google Scholar 

  • Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea. J Comp Neurol 225:581–590

    CAS  PubMed  Google Scholar 

  • Bodznick D, Montgomery JC, Bradley DJ (1992) Suppression of common mode signals within the electrosensory system of the little skate, Raja erinacea. J Exp Biol 171:107–125

    Google Scholar 

  • Bone Q (1977) Mauthner neurons in elasmobranchs. J Mar Biol Ass UK 57:253–259

    Google Scholar 

  • Bone Q (1978) Locomotor muscle. In: Hoar WS, Randall DK (eds) Fish physiology, vol 7. Academic, New York, pp 361–424

    Google Scholar 

  • Boord RL (1977) Auricular projections in the clearnose skate, Raja eglanteria. Am Zool 17: 887

    Google Scholar 

  • Boord RL, Campbell CBG (1977) Structural and functional organization of the lateral line system of sharks. Am Zool 17:431–441

    Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J Comp Neurol 207:274–282

    CAS  PubMed  Google Scholar 

  • Boord RL, Roberts BL (1980) Medullary and cerebellar projections of the statoacoustic nerve of the dogfish Scyliorhinus canicula. J Comp Neurol 193:57–68

    CAS  PubMed  Google Scholar 

  • Boord RL, Sperry DG (1991) Topography and nerve supply of the cucullaris (trapezius) of skates. J Morphol 207:165–172

    CAS  PubMed  Google Scholar 

  • Braak H (1967) Purkinje cell bodies in the stratum moleculare of Chimaera monstrosa. Anat Anz 120:357–359

    CAS  PubMed  Google Scholar 

  • Bratton B, Ayers J (1987) Observations on the organ discharge of the skate species (Chondrichthyes, Rajidae) and its relationship to behaviour. Environ Biol Fish 4:241–254

    Google Scholar 

  • Bruckmoser P (1973) Beziehungen zwischen Struktur und Funktion in der Evolution des Telencephalon. Verh Dtsch Zool Ges 66:219–229

    Google Scholar 

  • Bruckmoser P, Dieringer N (1973) Evoked potentials in the primary and secondary olfactory projection areas of the forebrain in Elasmobranchia. J Comp Physiol [A] 87:65–74

    Google Scholar 

  • Brunken WJ, Witkovsky P, Karten HJ (1986) Retinal neurochemistry of three elasmobranch species: an immunohistochemical approach. J Comp Neurol 243:1–12

    CAS  PubMed  Google Scholar 

  • Bruun A, Ehinger B, Systsma VM (1984) Neurotransmitter localization in the skate retina. Brain Res 295:233–248

    CAS  PubMed  Google Scholar 

  • Bruun A, Ehinger B, Sytsma V, Tornqvist K (1985) Retinal neuropeptides in the skates, Raja clavata, R radiata, R oscellata (Elasmobranchii). Cell Tissue Res 241:17–24

    CAS  PubMed  Google Scholar 

  • Bullock TH (1984) Physiology of the tectum mesencephali in elasmobranchs. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 47–68

    Google Scholar 

  • Bullock TH, Northcutt RG, Bodznick DA (1982) Evolution of electroreception. Trends Neurosci 5:50–53

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46

    Google Scholar 

  • Bundgaard M, Cserr HF (1991) Barrier membranes at the outer surface of the brain of an elasmobranch, Raja erinacea. Cell Tissue Res 265:113–120

    CAS  PubMed  Google Scholar 

  • Cameron AA, Plenderleith MB, Snow PJ (1990) Organization of the spinal cord in four species of elasmobranch fish: cytoarchitecture and distribution of serotonin and selected neuropeptides. J Comp Neurol 297:201–218

    CAS  PubMed  Google Scholar 

  • Carey FG, Teal JM (1969) Mako and porbeagle: warm-bodied sharks. Comp Biochem Physiol [A] 28:199–204

    CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Casterlin ME, Reynolds WW (1979) Shark (Mustelus canis) thermoregulation. Comp Biochem Physiol [A] 64:451–453

    Google Scholar 

  • Chan DKO, Ho MW (1969) Pressor substances from the caudal neurosecretory system of teleost and elasmobranch fish. Gen Comp Endocrinol 13:498

    Google Scholar 

  • Charlton HH (1932) Comparative studies on the nucleus preopticus pars magnocellularis and the nucleus lateralis tuberis in fishes. J Comp Neurol 54:237–276

    Google Scholar 

  • Chevins PFD (1968) The anatomy and physiology of the pituitary complex in the genus Raja, Elasmobranchii. PhD thesis, Leeds University

    Google Scholar 

  • Chevins PFD, Dodd JM (1970) Pituitary innervation and control of colour change in skates, Raja naevus, R clavata, R montagui, and R radiata. Gen Comp Endocrinol 15:232–241

    CAS  PubMed  Google Scholar 

  • Chiba A, Honma Y (1992) Distribution of neuropeptide Y-like immunoreactivity in the brain and hypophysis of the cloudy dogfish, Scyliorhinus torazame. Cell Tissue Res 268:453–461

    CAS  PubMed  Google Scholar 

  • Chiba A, Honma Y, Ito S, Honma S (1989) Somatostatin-immunoreactivity in the brain of the gummy shark, Mustelus manazo Bleeker, with special regard to the hypothalamo-hypophyseal system. Biomed Res 10 [Suppl 3]:1–12

    CAS  Google Scholar 

  • Chiba A, Oka S, Honma Y (1991) Immunocytochemical distribution of FMRFamide-like substance in the brain of the cloudy dogfish, Scyliorhinus torazame. Cell Tissue Res 265:243–250

    CAS  PubMed  Google Scholar 

  • Cifuentes M, Rodríguez S, Pérez J, Grondona JM, Rodriguez EM, Fernández-Llebrez P (1994) Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner’s fibre. Exp Brain Res 98:431–440

    CAS  PubMed  Google Scholar 

  • Coggeshall RE, Leonard RB, Applebaum ML, Willis WD (1978) Organization of peripheral nerves and spinal roots of the Atlantic stingray, Dasyatis sabina. J Neurophysiol 41:97–107

    CAS  PubMed  Google Scholar 

  • Cohen DH, Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182:492–494

    CAS  PubMed  Google Scholar 

  • Collin SP (1988) The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Exp Biol 47:195–207

    CAS  PubMed  Google Scholar 

  • Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322

    Google Scholar 

  • Conley RA, Bodznick D (1994) The cerebellar dorsal granular ridge in elasmobranch has proprioceptive and electroreceptive representations and projects homotopically to the medullary electrosensory nucleus. J Comp Physiol [A] 174:707–721

    CAS  Google Scholar 

  • Corwin JT (1981a) Peripheral auditory physiology in the lemon shark; evidence of parallel otolithic and non-otolithic sound detection. J Comp Physiol [A] 142:379–390

    Google Scholar 

  • Corwin JT (1981b) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 81–105

    Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in haircell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:345–356

    CAS  PubMed  Google Scholar 

  • Corwin JT (1985) Auditory neurons expand their terminal arbors throughout life and orient toward site of postembryonic hair cell production in the macula neglecta in elasmobranchs. J Comp Neurol 239:445–452

    CAS  PubMed  Google Scholar 

  • Corwin JT, Northcutt RG (1982) Auditory centers in the elasmobranch brain stem: deoxyglucose autoradiography and evoked potential recording. Brain Res 236:261–273

    CAS  PubMed  Google Scholar 

  • Crawshaw LI, Hammel HT (1973) Behavioral temperature regulation in the California hornshark, Heterodontus francisci. Brain Behav Evol 7:447–452

    CAS  PubMed  Google Scholar 

  • Dahlgren U (1914) On the electric motor nerve centers in the skates (Rajidae). Science 40:862–863

    CAS  PubMed  Google Scholar 

  • Dammerman KW (1910) Der Saccus vasculosus der Fische, ein Tiefeorgan. Z Wiss Zool 96:654–726

    Google Scholar 

  • Demski LS (1977) Electrical Stimulation of the shark brain. Am Zool 17:487–500

    Google Scholar 

  • Demski LS, Fields RD (1988) Dense-cored vesicle-containing components of the terminal nerve of sharks and rays. J Comp Neurol 278:604–614

    CAS  PubMed  Google Scholar 

  • Demski LS, Northcutt RG (1983) The terminal nerve: a new chemosensory system in vertebrates? Science 220:435–437

    CAS  PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    CAS  PubMed  Google Scholar 

  • Dijkgraaf S, Kalmijn AJ (1962) Verhaltensversuche zur Funktion des Lorenzinischen Ampullen. Naturwissenschaften 49:400

    Google Scholar 

  • Dodd JM, Dodd MHJ, Jenkins N (1980) Presence of a gonadotropin in the Rachendachhypophyse of the pituitary gland of the rabbitfish Hydrolagus collei (Chondrichthyes: Holocephali). Gen Comp Endocrinol 40:342–343

    Google Scholar 

  • Dodd JM, Dodd MHI, Duggan RT (1983) Control of reproduction in elasmobranch fishes. In: Rankin JC, Pitcher TC, Duggan RT (eds) Control processes in fish physiology. Wiley, New York, pp 221–285

    Google Scholar 

  • Droge MH, Leonard RB (1983a) Organization of spinal motor nuclei in the stingray, Dasyatis sabina. Brain Res 276:201–211

    CAS  PubMed  Google Scholar 

  • Droge MH, Leonard RB (1983b) Swimming pattern in intact and decerebrated stingrays. J Neurophysiol 50:162–177

    CAS  PubMed  Google Scholar 

  • Droge MH, Leonard RB (1983c) Swimming rhythm in decerebrated, paralyzed stingrays: normal and abnormal coupling. J Neurophysiol 50:178–191

    CAS  PubMed  Google Scholar 

  • Dryer L, Graziadei PPC (1993) A pilot study on morphological compartmentalization and heterogeneity in the elasmobranch olfactory bulb. Anat Embryol (Berl) 188:41–51

    CAS  Google Scholar 

  • Dunn RF, Koester DM (1984) Primary afferent projections of the octavus nerve to the inferior reticular formation and adjacent nuclei in the elasmobranch, Rhinobatos sp. Brain Res 323:354–359

    CAS  PubMed  Google Scholar 

  • Dunn RF, Koester DM (1987) Primary afferent projections to the central octavus nuclei in the elasmobranch, Rhinobatos sp, as demonstrated by nerve degeneration. J Comp Neurol 260:564–572

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1972) New insights into the organization of the shark brain. Comp Biochem Physiol [A] 42:121–129

    CAS  Google Scholar 

  • Ebbesson SOE (1980a) The parcellation theory and its relation to interspecific variability in brain organization evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1980b) On the organization of the telencephalon in elasmobranchs. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 1–16

    Google Scholar 

  • Ebbesson SOE, Campbell CBG (1973) On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum). J Comp Neurol 152:233–254

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Heimer L (1970) Projections of the olfactory tract fibers in the nurse shark (Ginglymostoma cirratum). Brain Res 17:47–55

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Hodde KC (1981) Ascending spinal systems in the nurse shark, Ginglymostoma cirratum. Cell Tissue Res 216:313–331

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Meyer DL (1980) The visual system of the guitarfish (Rhinobatos productus). Cell Tissue Res 206:243–250

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Northcutt RG (1976) Neurology of anamniotic vertebrates. In: Masterton RB, Bitterman ME, Campbell CBG, Hotton N (eds) Evolution of brain and behavior in vertebrates. Erlbaum, Hilsdale, pp 115–146

    Google Scholar 

  • Ebbesson SOE, Ramsey JS (1968) The optic tracts of two species of sharks (Galeocerdo cuvieri and Ginglymostoma cirratum). Brain Res 8:36–53

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Schroeder D (1971) Connections of the nurse shark’s telencephalon. Science 173:254–256

    CAS  PubMed  Google Scholar 

  • Eccles JC, Táboriková H, Tsukahara N (1970) Responses of the granule cells of the selachian cerebellum (Mustelus canis). Brain Res 17:87–102

    CAS  PubMed  Google Scholar 

  • Edinger L (1892) Untersuchungen über die vergleichende Anatomie des Gehirns. 2. Das Zwischenhirn. I. Das Zwischenhirns der Selachier und der Amphibien. Abh Senckenberg Naturforsch Gesellsch 18:1–55

    Google Scholar 

  • Edinger L (1901) Das Cerebellum von Scyllium canicula. Arch Mikr Anat 58:661–678

    Google Scholar 

  • Edinger L (1908) Vorlesungen über den Bau der Nervösen Zentralorgane des Menschen und der Tiere. Vogel, Leipzig

    Google Scholar 

  • Ewart JC (1890) The cranial nerves of the torpedo. Proc R Soc Lond B 47:290–291

    Google Scholar 

  • Ewart JC (1983) The electric organ of the skate: note on an electric centre in the spinal cord. Proc R Soc Lond B 53:388–391

    Google Scholar 

  • Farner H-P (1978a) Untersuchungen zur Embryonalentwicklung des Gehirns von Scyliorhinus canicula (L). I. Bildung der Hirngestalt, Migrationsmodi und-phasen, Bau des Zwischenhirns. J Hirnforsch 19:313–332

    CAS  PubMed  Google Scholar 

  • Farner H-P (1978b) Untersuchungen zur Embryonalentwicklung des Gehirns von Scyliorhinus canicula (L). II. Das Tectum opticum und dessen Stratification. J Hirnforsch 19:333–344

    CAS  PubMed  Google Scholar 

  • Farner H-P (1978c) Untersuchungen zur Embryonalentwicklung des Gehirns von Scyliorhinus canicula (L). III. Das optische System und angrenzende Nuclei im mesencephalen Tegmentum. J Hirnforsch 19:405–414

    CAS  PubMed  Google Scholar 

  • Faucette JR (1969a) The olfactory bulb and medial hemisphere wall of the rat-fish, Chimaera. J Comp Neurol 137:377–406

    CAS  PubMed  Google Scholar 

  • Faucette JR (1969b) The accessory olfactory bulbs and the lateral telencephalic wall of the rat-fish, Chimaera. J Comp Neurol 137:407–432

    CAS  PubMed  Google Scholar 

  • Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol [A] 47:1235–1240

    CAS  Google Scholar 

  • Fiebig E (1988) Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (elasmobranchii): a study with WGA-HRP and extracellular granule cell recording. J Comp Neurol 268:567–583

    CAS  PubMed  Google Scholar 

  • Fields RD, Bullock TH, Lange GD (1993) Ampullary sense organs, perihpheral, central and behavioral electroreception in chimaeras (Hydrolages, Holocephali, Chondrichthyes). Brain Behav Evol 41:269–289

    CAS  PubMed  Google Scholar 

  • Finger TE (1978) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J Comp Neurol 180:691–706

    CAS  PubMed  Google Scholar 

  • Finger TE, Karten HJ (1978) The accessory optic system in teleosts. Brain Res 153:144–149

    CAS  PubMed  Google Scholar 

  • Finstad WD, Nelson DR (1975) Circadian activity rhythm in the hornshark, Heterodontus francisci: effect of light intensity. Bull South Calif Acad Sci 74:20–26

    Google Scholar 

  • Fox GQ (1977) The morphology of the oval nuclei of neonatal Torpedo marmorata. Cell Tissue Res 178:155–167

    CAS  PubMed  Google Scholar 

  • Fridberg G (1962) The caudal neurosecretory system in some elasmobranchs. Gen Comp Endocrinol 2:249–265

    CAS  PubMed  Google Scholar 

  • Gabriel KH (1970) Vergleichend-histologische Studien am Subcommissuralorgan. Anat Anz 127:129–170

    CAS  PubMed  Google Scholar 

  • Gerlach J (1947) Beiträge zur vergleichenden Morphologie des Selachierhirnes. Anat Anz 96:79–165

    Google Scholar 

  • Gilbert PW (1984) Biology and behavior of sharks. Endeavour 8:179–187

    Google Scholar 

  • Glees P (1940) Der periphere und zentrale Anteil des sympatischen Nervensystems der Selachier. Acta Neerl Morphol 3:209–248

    Google Scholar 

  • Gonzalez A, Smeets WJAJ (1994) Catecholamine systems in the CNS of amphibians. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 77–102

    Google Scholar 

  • Graeber RC (1978) Behavioral studies correlated with central nervous system integration of vision in sharks. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. US Government Printing, Washington DC, pp 195–225

    Google Scholar 

  • Graeber RC (1980) Telencephalic function in elasmobranchs. A behavioral perspective. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, Washington DC, pp 17–39

    Google Scholar 

  • Graeber RC, Ebbesson SOE (1972) Retinal projections in the lemon shark (Negaprion brevirostris). Brain Behav Evol 5:461–477

    CAS  PubMed  Google Scholar 

  • Graeber RC, Ebbesson SOE, Jane JA (1973) Visual discrimination in sharks without optic tectum. Science 180:413–415

    CAS  PubMed  Google Scholar 

  • Graeber RC, Schroeder DM, Jane JA, Ebbesson SOE (1978) Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum). J Comp Neurol 180:325–344

    CAS  PubMed  Google Scholar 

  • Graf W, Brunken WJ (1984) Elasmobranch oculomotor organization: anatomical and theoretical aspects of the phylogenetic development of vestibulo-oculomotor connectivity. J Comp Neurol 227:569–581

    CAS  PubMed  Google Scholar 

  • Grillner S (1974) On the generation of locomotion in the spinal dogfish. Exp Brain Res 20:459–470

    CAS  PubMed  Google Scholar 

  • Grillner S, Kashin S (1976) On the generation and performance of swimming in fish. In: Herman R, Grillner S, Stein P, Stuart D (eds) Neural control of locomotion, vol 18. Plenum, New York, pp 181–202

    Google Scholar 

  • Grillner S, Perret C, Zangger P (1976) Central generation of locomotion in the spinal dogfish. Brain Res 109:255–269

    CAS  PubMed  Google Scholar 

  • Grondona JM, Fernández-Llebrez P, Pérez J, Cifuentes M, Pérez-Fígares Rodriguez EM (1994) Class-specific epitopes detected by polyclonal antibodies against the secretory products of the subcommissural organ of the dogfish Scyliorhinus canicula. Cell Tissue Res 276:515–522

    Google Scholar 

  • Gruber SH, Cohen JL (1978) Visual system of the elasmobranchs: state of the art 1960-1975. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 11–105

    Google Scholar 

  • Hamasaki DI, Streck P (1971) Properties of the epiphysis cerebri of the small-spotted dogfish shark, Scyliorhinus caniculus L. Vision Res 11:189–198

    CAS  PubMed  Google Scholar 

  • Hayle TH (1973a) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates. J Comp Neurol 149:463–476

    CAS  PubMed  Google Scholar 

  • Hayle TH (1973b) A comparative study of spinocerebellar systems in three classes of poikilothermic vertebrates. J Comp Neurol 149:477–495

    CAS  PubMed  Google Scholar 

  • Heath AR (1990) The ocular tapetum lucidum: a model system for interdisciplinary studies in elasmobranch biology. J Exp Zool [Suppl] 5:41–45

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Hodgson ES, Mathewson RF (1971) Chemosensory orientation in sharks. Ann NY Acad Sc 188:175–182

    CAS  Google Scholar 

  • Hodgson ES, Mathewson RF, Gilbert PW (1967) Electroencephalographic studies of chemoreception in sharks. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. Johns Hopkins Press, Baltimore, pp 491–502

    Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylaseimmunoreactive neurons in the rat brain. In: Handbook of chemical neuroanatomy, vol 2. Classical neurotransmitters in the CNS, part I. Elsevier, Amsterdam, pp 277–379

    Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland. Cambridge University Press, London

    Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Google Scholar 

  • Horstmann E (1954) Die Faserglia des Selachiergehirns. Z Zellforsch 30:588–617

    Google Scholar 

  • Houser GL (1901) The neurones and supporting elements of the brain of a selachian. J Comp Neurol 11:65–175

    Google Scholar 

  • Housley GD, Montgomery JC (1983) Central projections of vestibular afferents from the horizontal semicircular canal in the carpet shark Cephaloscyllium isabella. J Comp Neurol 221:154–162

    CAS  PubMed  Google Scholar 

  • Hueter RE (1990) Adaptations for spatial vision in sharks. J Exp Zool [Suppl] 5:130–141

    Google Scholar 

  • Hugosson R (1957) Morphologic and experimental studies on the development and significance of the rhombencephalic longitudinal cell columns. PhD thesis, Lund University

    Google Scholar 

  • Jasinkski A, Gorbman A (1966) Hypothalamo-hypophyseal vascular and neurosecretory links in the ratfish, Hydrolagus collei (Lay and Bennett). Gen Comp Endocrinol 6:476–490

    Google Scholar 

  • Jen LS, So K-F, Yew DT, Lee M (1983) An autoradiographic study of the retinofugal projections in the shark, Hemiscyllium plagiosum. Brain Res 274:135–139

    CAS  PubMed  Google Scholar 

  • Johnston JB (1902) The brain of Petromyzon. J Comp Neurol 7:2–82

    Google Scholar 

  • Johnston JB (1905) The radix mesencephalica trigemini. The ganglion isthmi. Anat Anz 87:364–379

    Google Scholar 

  • Johnston JB (1911) The telencephalon of selachians. J Comp Neurol 21:1–113

    Google Scholar 

  • Jones HC, Bucknall RM (1988) Inherited prenatal hydrocephalus in the X-Tx rat: a morphological study. Neuropathol Appl Neurobiol 14:263–274

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed) Handbook of sensory physiology, vol III/ 3. Springer, Berlin Heidelberg New York, pp 147–200

    Google Scholar 

  • Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates and rays. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 507–528

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–917

    CAS  PubMed  Google Scholar 

  • Kashin SM, Feldman AG, Orlovsky GN (1974) Locomotion of fish evoked by electrical stimulation of the brain. Brain Res 82:41–47

    CAS  PubMed  Google Scholar 

  • Keenan E (1928) The phylogenetic development of the substantia gelatinosa Rolandi, part I: fishes. Proc Kon Ned Akad Wet Amsterdam 31:837–854

    Google Scholar 

  • Klatzo I (1967) Cellular morphology of the lemon shark brain. In: Gilbert PW, Mathewson RF, Rail DP (eds) Sharks, skates and rays. Johns Hopkins Press, Maryland, pp 341–359

    Google Scholar 

  • Kleerekoper H (1978) Chemoreception and its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 269–329

    Google Scholar 

  • Klimley AP (1994) The predatory behavior of the white shark. Am Sci 82:122–133

    Google Scholar 

  • Knowles F (1965) Evidence for a dual control, by neurosecretion of hormone synthesis and hormone release in the pituitary of the dog fish, Scyliorhinus stellaris. Philos Trans R Soc Lond B 249:435–456

    CAS  Google Scholar 

  • Knowles F, Weatherhead B, Martin R (1970) The ultrastructure of neurosecretory fibre terminals after zinc-iodineosmium impregnation. In: Bargmann W, Scharrer B (eds) Aspects of neurosecretion. Springer, Berlin Heidelberg New York, pp 159–165

    Google Scholar 

  • Knowles F, Vollrath L, Meurling P (1975) Cytology and neuroendocrine relations of the pituitary of the dogfish, Scyliorhinus canicula. Proc R Soc Lond B 191:507–525

    CAS  PubMed  Google Scholar 

  • Koester DM (1983) Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria. J Comp Neurol 221:199–215

    CAS  PubMed  Google Scholar 

  • Kremers JWPM, Nieuwenhuys R (1979) Topological analsyis of the brain stem of the crossopterygian fish Latimeria chalumnae. J Comp Neurol 187:613–638

    CAS  PubMed  Google Scholar 

  • Kreps EM (1981) Brain lipids of elasmobranchs (an essay on comparative neurobiology). Comp Biochem Physiol 688:363–367

    Google Scholar 

  • Kuchnow KP (1971) The elasmobranch pupillary response. Vision Res 11:1395–1406

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1927) Vorlesungen über das Zentralnervensystem der Wirbeltiere. Fischer, Jena

    Google Scholar 

  • Kuhlenbeck H (1929a) Ãœber die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95

    Google Scholar 

  • Kuhlenbeck H (1929b) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat Anz 67:1–51

    Google Scholar 

  • Kuhlenbeck H (1973) Overall morphological pattern. In: Kuhlenbeck H (ed) The central nervous system of vertebrates, vol 3/II. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1977) Derivatives of the prosencephalon: diencephalon and telencephalon. In: Kuhlenbeck H (ed) The central nervous system of vertebrates, vol 5/I Karger, Basel

    Google Scholar 

  • Kuhlenbeck H, Niimi K (1969) Further observations on the morphology of the brain in the holocephalian elasmobranchs Chimaera and Callorhynchus. J Hirnforsch 11:267–314

    CAS  PubMed  Google Scholar 

  • Kusunoki T, Tsuda Y, Takashima F (1973) The chemoarchitectonics of the shark brain. J Hirnforsch 14:13–36

    CAS  PubMed  Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Leonard RB, Coggeshall RE, Willis WD (1978a) A documentation of an age related increase in neuronal and axonal members in the stingray, Dasyatis sabina Lesener. J Comp Neurol 179:13–22

    CAS  PubMed  Google Scholar 

  • Leonard RB, Rudomin P, Willis WD (1978b) Central effects of volleys in sensory and motor components of peripheral nerve in the stingray, Dasyatis sabina. J Neurophysiol 41:108–125

    CAS  PubMed  Google Scholar 

  • Leonard RB, Kenshalo DR Jr, Willis WD (1978c) Receptive field properties of primary afferents in the atlantic stingray, Dasyatis sabina. Soc Neurosci Abstr 4:46

    Google Scholar 

  • Leonard RB, Rudonín P, Droge MH, Grossman AE, Willis WD (1979) Locomotion in the decerebrate stingray. Neurosci Lett 14:315–319

    CAS  PubMed  Google Scholar 

  • Livingston CA, Williams BJ, Ritchie TC, Leonard RB (1983) The origin and trajectories of descending pathways in the spinal cord of the stingray, Dasyatis sabina. Soc Neurosci Abstr 9:285

    Google Scholar 

  • Locy WA (1905) On a newly recognized nerve connected with the forebrain of selachians. Anat Anz 26:33–36

    Google Scholar 

  • Lovejoy DA, Ashmead BJ, Coe IR, Sherwood NM (1992) Presence of gonadotropin-releasing hormone immunoreactivity in dogfish and skate brains. J Exp Zool 263:272–283

    CAS  Google Scholar 

  • Lowenstein O (1974) Comparative morphology and physiology. In: Kornhuber MH (ed) Handbook of sensory physiology, vol 6. Springer, Berlin Heidelberg New York, pp 75–120

    Google Scholar 

  • Lowenstein O, Compton GJ (1978) A comparative study of the responses of isolated first-order semicircular canal afferents to angular and linear acceleration, analysed in the time and frequency domains. Proc R Soc Lond B 202:313–338

    Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 114:471–489

    CAS  Google Scholar 

  • Luiten PGM (1981a) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections. J Comp Neurol 196:531–538

    CAS  PubMed  Google Scholar 

  • Luiten PGM (1981b) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo-telencephalic connections. J Comp Neurol 196:539–548

    CAS  PubMed  Google Scholar 

  • MacDonnell MF (1980a) Mesencephalic trigeminal nucleus in sharks. A light microscopic study. Brain Behav Evol 17:152–163

    CAS  PubMed  Google Scholar 

  • MacDonnell MF (1980b) Cerebrospinal fluid contacting and supra-ependymal mesencephalic trigeminal cells in the blue and mako sharks. A scanning electron microscopic study. Brain Behav Evol 17:164–177

    CAS  PubMed  Google Scholar 

  • MacDonnell MF (1984) Circumventricular mesencephalic trigeminal midline ridge formation in cartilaginous fishes: species variations. Brain Behav Evol 24:124–134

    CAS  PubMed  Google Scholar 

  • MacDonnell MF (1989) Sub/supraependymal axonal net in the brains of sharks and probably targets in parasynaptic relationship. Brain Behav Evol 34:201–211

    CAS  PubMed  Google Scholar 

  • Manso MJ, Anadón R (1991) The optic tectum of the dogfish Scyliorhinus canicula L: a Golgi study. J Comp Neurol 307:335–349

    CAS  PubMed  Google Scholar 

  • Manso MJ, Anadón R (1993) Golgi study of the telencephalon of the small-spotted dogfish Scyliorhinus canicula L. J Comp Neurol 333:485–502

    CAS  PubMed  Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15

    CAS  PubMed  Google Scholar 

  • McCready PJ, Boord RL (1976) The topography of the superficial roots and ganglia of the anterior lateral line nerve of the smooth dogfish, Mustelus canis. J Morphol 150:527–538

    CAS  PubMed  Google Scholar 

  • McFarland WN (1990) Light in the sea: The optical world of elasmobranchs. J Exp Zool [Suppl] 5:3–12

    Google Scholar 

  • Meek J (1994) Catecholamines in the brains of Osteichthyes (bony fishes). In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 49–76

    Google Scholar 

  • Mellinger JCA (1963) Étude histophysiologique du système hypothalamo-hypophysaire de Scyliorhinus caniculus (L) en état de melanodispersion permanente. Gen Comp Endocrinol 3:26–45

    Google Scholar 

  • Mellinger JCA (1964) Les relations neuro-vasculoglandulaires dans l’appareil hypophysaire de la rousette, Scyliorhinus caniculus (L) (poissons elasmobranches). Arch Anat Histol Embryol 47:1–201

    CAS  PubMed  Google Scholar 

  • Meredith GM, Roberts BL (1986) Central organization of the efferent supply to the labyrinthine and lateral line receptors of the dogfish. Neuroscience 17:225–233

    CAS  PubMed  Google Scholar 

  • Meredith GE, Smeets WJAJ (1987) Immunocytochemical analysis of the dopamine system in the forebrain and midbrain of Raja radiata: evidence for a substantia nigra and ventral tegmental area in cartilaginous fish. J Comp Neurol 265:530–548

    CAS  PubMed  Google Scholar 

  • Meurling P (1960) Presence of a pituitary portal system in elasmobranches. Nature 187:336–337

    Google Scholar 

  • Meurling P (1967) The vascularization of the pituitary in elasmobranchs. Sarsia 28:1–104

    Google Scholar 

  • Meurling P (1972) Control of pars intermedia in large embryos of the spiny dogfish, Squalus acanthias. Gen Comp Endocrinol 18:609

    Google Scholar 

  • Meurling P, Björklund A (1970) The arrangement of neurosecretory and catecholamine fibres in relation to the pituitary intermedia cells of the skate, Raja radiata. Z Zeilforsch Mikr Anat 108:81–93

    CAS  Google Scholar 

  • Meurling P, Fremberg M, Björklund A (1969) Control of MSH release in the intermediate lobe of Raja radiata (Elasmobranchii). Gen Comp Endocrinol 13:520

    Google Scholar 

  • Molist P, Rodriguez-Moldes I, Anadón R (1992) Immunocytochemical and electron-microscopic study of the elasmobranch nucleus sacci vasculosi. Cell Tissue Res 270:395–404

    Google Scholar 

  • Molist P, Rodriguez-Moldes I, Anadón R (1993) Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study. Brain Behav Evol 41:290–302

    CAS  PubMed  Google Scholar 

  • Montgomery JC (1978) Dogfish vestibular system. PhD thesis, Bristol University

    Google Scholar 

  • Montgomery JC (1980) Dogfish horizontal canal system: responses of primary afferent, vestibular and cerebellar neurons to rotational stimulation. Neuroscience 5:1761–1769

    CAS  PubMed  Google Scholar 

  • Montgomery JC (1981) Origin of the parallel fibers in the cerebellar crest overlying the intermediate nucleus of the elasmobranch hindbrain. J Comp Neurol 202:185–191

    CAS  PubMed  Google Scholar 

  • Montgomery JC (1982) Functional organization of the dogfish vestibulocerebellum. Brain Behav Evol 20:118–128

    CAS  PubMed  Google Scholar 

  • Montgomery JC (1984) Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal’s own ventilatory movement. J Comp Physiol [A] 155:103–111

    Google Scholar 

  • Montgomery JC, Bodznick D (1993) Hindbrain circuitry mediating common mode suppression of ventilatory reafference in the electrosensory system of the little skate Raja erinacea. J Exp Biol 183:203–215

    Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148

    CAS  PubMed  Google Scholar 

  • Montgomery JC, Housley GD (1983) The abducens nucleus in the carpet shark Cephaloscyllium isabella. J Comp Neurol 221:163–168

    CAS  PubMed  Google Scholar 

  • Montgomery JC, Roberts BL (1979) Organization of vestibular afferents to the vestibular nuclei of the dogfish. Brain Behav Evol 16:81–98

    CAS  PubMed  Google Scholar 

  • Mori S, Nishimura H, Kurakami C, Yamamura T, Aoki M (1978) Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum. J Neurophysiol 41:1580–1591

    CAS  PubMed  Google Scholar 

  • Mori S, Nishimura H, Aoki M (1980) Brain stem activation of the spinal stepping generator. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited: specifying function for a nonspecific system. Raven, New York, pp 241–260

    Google Scholar 

  • Morita Y, Ito H, Masai H (1980) Central gustatory paths in the crucian carp Carassius carassius. J Comp Neurol 191:119–132

    CAS  PubMed  Google Scholar 

  • Mos W, Williamson R (1986) A quantitative analysis of the spinal motor pool and its target muscle during growth in the dogfish, Scyliorhinus canicula. J Comp Neurol 248:431–440

    CAS  PubMed  Google Scholar 

  • Myrberg AA Jr (1978) Underwater sound — its effect on the behavior of sharks. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. US Government Printing Office, Washington DC, pp 391–417

    Google Scholar 

  • Nakai Y, Ochiai H, Shioda S (1977) Cytological evidence for different types of cerebrospinal fluid-contacting subepen-dymal cells in the preoptic and infundibular recesses of the frog. Cell Tissue Res 176:317–334

    CAS  PubMed  Google Scholar 

  • Nakajima Y (1970) Fine structure of the medullary command nucleus of the electric organ of the skate. Tissue Cell 2:47–59

    CAS  PubMed  Google Scholar 

  • Nelson DR, Johnson RH (1970) Diel activity rhythms in the nocturnal botton-dwelling sharks, Heterodontus francisci and Cephaloscyllium ventriosum. Copeia 1970:732–739

    Google Scholar 

  • Newman DB, Cruce WLR (1982) The organization of the reptilian brainstem reticular formation: a comparative study using Nissl and Golgi techniques. J Morphol 173:325–349

    CAS  PubMed  Google Scholar 

  • Newman DB, Cruce WLR, Bruce LL (1983) The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems. J Comp Neurol 215:17–32

    CAS  PubMed  Google Scholar 

  • Nicholson C, Llinás R, Precht W (1969) Neural elements of the cerebellum in elasmobranch fishes; structural and functional characteristics. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 215–243

    Google Scholar 

  • Nieuwenhuys R (1967) Comparative anatomy of the cerebellum. In: Fox CA, Snider RS (eds) The cerebellum. Elsevier, Amsterdam, pp 1–93 (Progress in brain research, vol 25)

    Google Scholar 

  • Norris HW, Hughes SP (1920) The cranial, occipital and anterior spinal nerves of the dogfish, Squalus acanthias. J Comp Neurol 31:293–402

    Google Scholar 

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429

    Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. US Government Printing Office, Washington DC, pp 117–193

    Google Scholar 

  • Northcutt RG (1979) Retinofugal pathways in fetal and adult spiny dogfish, Squalus acanthias. Brain Res 162:219–230

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anam-niotic vertebrates. In: Popper AN, Fay RR (eds) Proceedings in life science: comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York, pp 79–118

    Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in non-mammals. Annu Rev Neurosci 4:301–350

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24:701–716

    Google Scholar 

  • Northcutt RG (1990) Visual pathways in elasmobranchs: Organization and phylogenetic implications. J Exp Zool [Suppl] 5:97–107

    CAS  Google Scholar 

  • Northcutt RG, Wathey JC (1980) Guitarfish possess ipsilateral as well as contralateral retinofugal projections. Neurosci Lett 20:237–242

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Reiner A, Karten HJ (1988) Immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 277:250–267

    CAS  PubMed  Google Scholar 

  • Nozaki M, Tsukahara T, Kobayashi H (1984) An immunocy-tological study of the distribution of neuropeptides in the brain of fish. Biomed Res [Suppl] 4:135–145

    Google Scholar 

  • Oksche A (1993) Phylogenetic and conceptual aspects of the subcommissural organ. In: Oksche A, Rodriguez EM, Fernández-Llebrez P (eds) The subcommissural organ. An ependymal brain gland. Springer, Berlin Heidelberg New York, pp 23–32

    Google Scholar 

  • O’Leary DP, Dunn RF, Honrubia V (1976) Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation. J Neurophysiol 39:631–644

    PubMed  Google Scholar 

  • Onstott D, Elde R (1986) Immunohistochemical localization of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225

    CAS  PubMed  Google Scholar 

  • Overholser MD, Whitley JR, O’Dell BL, Hogan AG (1954) The ventricular system in hydrocephalic rat brains produced by a deficiency of vitamin B12 and folk acid in the maternal diet. Anat Rec 120:917–934

    CAS  PubMed  Google Scholar 

  • Palmgren A (1921) Embryological and morphological studies on the midbrain and cerebellum of vertebrates. Acta Zool 2:1–94

    Google Scholar 

  • Pang PKT, Griffith RW, Atz JW (1977) Osmoregulation in elasmobranchs. Am Zool 17:365–377

    CAS  Google Scholar 

  • Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New York, pp xiv, 335

    Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 409–439 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Paul DH (1969) Parallel fibre response in the elasmobranch cerebellum. J Physiol (Lond) 202:110–112

    Google Scholar 

  • Paul DH (1982) The cerebellum of fishes: a comparative neurophysiological and neuroanatomical review. Adv Comp Physiol Biochem 8:111–177

    CAS  PubMed  Google Scholar 

  • Paul DH, Roberts BL (1975) Connections between the cerebellum and the reticular formation in the dogfish Scyliorhinus canicula. J Physiol (Lond) 249:62–63P

    Google Scholar 

  • Paul DH, Roberts BL (1977) Studies on a primitive cerebellar cortex. I. The anatomy of the lateral-line lobes of the dogfish, Scyliorhinus canicula. Proc R Soc Lond B 195:453–466

    CAS  PubMed  Google Scholar 

  • Paul DH, Roberts BL (1978) Organization of the reticular formation in the dogfish Scyliorhinus canicula. J Physiol (Lond) 280:71P–72P

    CAS  Google Scholar 

  • Paul DH, Roberts BL (1979) The significance of cerebellar function for a reflex movement of the dogfish. J Comp Physiol 134:69–74

    Google Scholar 

  • Paul DH, Roberts BL (1981) The activity of cerebellar neurones of an elasmobranch fish (Scyliorhinus canicula) during a reflex movement of a fin. J Physiol (Lond) 321:369–383

    CAS  Google Scholar 

  • Paul DH, Roberts BL (1983) The activity of cerebellar nuclear neurones in relation to stimuli which evoke a pectoral fin reflex in dogfish. J Physiol (Lond) 342:465–481

    CAS  Google Scholar 

  • Paul DH, Roberts BL (1984) Projections of cerebellar Purkinje cells in the dogfish, Scyliorhinus. Neurosci Lett 44:43–46

    CAS  PubMed  Google Scholar 

  • Perks AM (1969) The neurohypophysis. In: Hoar WS, Randall DJ (eds) Fish physiology, vol II: the endocrine system. Academic, New York, pp 112–205

    Google Scholar 

  • Plassmann W (1982) Central projections of the octaval system in the thornback ray Platyrhinoidis tiseriata. Neurosci Lett 32:229–233

    CAS  PubMed  Google Scholar 

  • Poloumordwinoff D (1898) Recherches sur les terminaisons nerveuses sensitives dans les muscles striés volontaires. Trav Soc Sci Arcachon 3:73–79

    Google Scholar 

  • Puzdrowski RL, Leonard RB (1992) Variations in cerebellar morphology of the Atlantic stingray, Dasyatis sabina. Neurosci Lett 135:196–200

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL, Leonard RB (1993) The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. J Comp Neurol 332:21–37

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL, Leonard RB (1994) Vestibulo-oculomotor connections in an elasmobranch fish, the Atlantic stingray, Dasyatis sabina. J Comp Neurol 339:587–597

    CAS  PubMed  Google Scholar 

  • Ramón-Moliner E (1967) La différentiation morphologique des neurones. Arch Ital Biol 105:149–188

    PubMed  Google Scholar 

  • Ramón-Moliner E (1969) The leptodendritic neuron: its distribution and significance. Ann NY Acad Sci 167:65–70

    Google Scholar 

  • Ramón-Moliner E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335

    PubMed  Google Scholar 

  • Raschi W (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J Morphol 189:225–247

    Google Scholar 

  • Reiner A, Carraway RE (1987) Immunohistochemical and biochemical studies on Lys8-Asn9-neurotensin8–13 (LANT6)-related peptides in the basal ganglia of pigeons, turtles, and hamsters. J Comp Neurol 257:453–476

    CAS  PubMed  Google Scholar 

  • Repérant J, Miceli D, Rio JP, Peyrichoux J, Pierre J, Kirpitchnikova E (1986) The anatomical organization of retinal projections in the shark Scyliorhinus canicula with special reference to the evolution of the selachian primary visual system. Brain Res Rev 11:227–248

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbeltiere. Samson and Wallin, Stockholm

    Google Scholar 

  • Ripps H, Dowling JE (1990) Structural features and adaptive properties of photoreceptors in the skate retina. J Exp Zool [Suppl] 5:46–54

    CAS  Google Scholar 

  • Ritchie TC, Leonard RB (1982) Immunocytochemical demonstration of serotonergic cells, terminals and axons in the spinal cord of the stingray, Dasyatis sabina. Brain Res 240:334–337

    CAS  PubMed  Google Scholar 

  • Ritchie TC, Leonard RB (1983a) Immunohistochemical studies on the distribution and origin of candidate peptidergic primary afferent neurotransmitters in the spinal cord of an elasmobranch fish, the atlantic stingray (Dasyatis sabina). J Comp Neurol 213:414–425

    CAS  PubMed  Google Scholar 

  • Ritchie TC, Leonard RB (1983b) Immunocytochemical demonstration of serotonergic neurons and processes in the retina and optic nerve of the stingray, Dasyatis sabina. Brain Res 267:352–356

    CAS  PubMed  Google Scholar 

  • Ritchie TC, Livingston CA, Hughes MG, McAdoo DJ, Leonard RB (1983) The distribution of serotonin in the CNS of an elasmobranch fish: Immunocytochemical and biochemical studies in the atlantic stingray, Dasyatis sabina. J Comp Neurol 213:414–425

    CAS  PubMed  Google Scholar 

  • Ritchie TC, Roos LJ, Wiliams BJ, Leonard RB (1984) The descending and intrinsic serotoninergic innervation of an elasmobranch spinal cord. J Comp Neurol 224:395–406

    CAS  PubMed  Google Scholar 

  • Roberts BL (1969) The spinal nerves of the dogfish, Scyliorhinus. J Mar Biol Ass UK 49:51–75

    Google Scholar 

  • Roberts BL (1978) Mechanoreceptors and the behaviour of elasmobranch fishes with special reference to the acoustico-lateralis system. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 331–390

    Google Scholar 

  • Roberts BL (1981) Central processing of acousticolateralis signals in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 357–373

    Google Scholar 

  • Roberts BL, Meredith GM (1987) immunohistochemical study of a dopaminergic system in the spinal cord of the ray, Raja radiata. Brain Res 437:171–175

    CAS  PubMed  Google Scholar 

  • Roberts BL, Ryan KP (1975) Cytological features of the giant neurons controlling electric discharge in the ray Torpedo. J Mar Biol Ass UK 55:123–131

    Google Scholar 

  • Roberts BL, Timerick SJ, Paul DH (1991) Circuits for vestibular control of pectoral fin muscles in dogfish. In: Bush B, Armstrong DM (eds) Locomotor neural mechanisms in arthropods and vertebrates. Manchester University Press, Manchester, pp 285–291

    Google Scholar 

  • Roberts BL, Williamson RM (1983) Motor pattern formation in the dogfish spinal cord. In: Roberts A, Roberts B (eds) Neural origin of rhythmic movements. Society of Experimental Biology, Great Britain, pp 331–350

    Google Scholar 

  • Roberts BL, Witkovsky P (1975) A functional analysis of the mesencephalic nucleus of the fifth nerve in the selachian brain. Proc R Soc Lond B 190:473–495

    CAS  PubMed  Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Yulis CR (1992) Cell biology of the subcommissural organ. Int Rev Cytol 135:39–121

    CAS  PubMed  Google Scholar 

  • Rodriguez-Moldes MI, Anadón R (1988) Ultrastructural study of the evolution of globules in coronet cells of the saccus vasculosus of an elasmobranch (Scyliorhinus canicula L), with some observations on cerebrospinal fluid-contacting neurons. Acta Zool (Stockh) 69:217–224

    Google Scholar 

  • Rodriguez-Moldes I, Timmermans JP, Adriaensen D, De Groodt-Lasseel MHA, Scheuermann DW, Anadón R (1990) Immunohistochemical localization of calbindin-D28K in the brain of a cartilaginous fish, the dogfish (Scyliorhinus canicula L). Acta Anat 137:293–302

    CAS  PubMed  Google Scholar 

  • Rodriguez-Moldes I, Manso MJ, Becerra M, Molist P, Anadón R (1993) Distribution of substance P-like immunoreactivity in the brain of the elasmobranch Scyliorhinus canicula. J Comp Neurol 335:228–244

    CAS  PubMed  Google Scholar 

  • Rohon JV (1884) Zur Histiogenese des Rückenmarkes der Forelle. Sitz Ber Math Phys Kl Konigl Bayr Akad Wiss 14:39–56

    Google Scholar 

  • Rosiles JR, Leonard RB (1980) The organization of the extraocular motor nuclei in the atlantic stingray, Dasyatis sabina. J Comp Neurol 193:677–687

    CAS  PubMed  Google Scholar 

  • Rüdeberg C (1969) Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula (L). Z Zellforsch 96:548–581

    PubMed  Google Scholar 

  • Rüdeberg S-I (1961) Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. PhD thesis, Lund University

    Google Scholar 

  • Sathyanesan AG (1965) The hypophysis and hypothalamo-hypophyseal system in the chimaeroid fish Hydrolagus collei (Lay and Bennett) with a note on their vascularization. J Morphol 166:413–449

    Google Scholar 

  • Sato Y, Takatsuji K, Masai H (1983) Brain organization of sharks, with special reference to archaic species. J Hirnforsch 24:289–295

    CAS  PubMed  Google Scholar 

  • Schaeffer B, Williams M (1977) Relationships of fossil and living elasmobranchs. Am Zool 17:293–302

    Google Scholar 

  • Schaper A (1898) The fine structure of the selachian cerebellum (Mustelus vulgaris) as shown by chrome-silver impregnation. J Comp Neurol 8:1–120

    Google Scholar 

  • Scharrer E (1952) Das Hypophysen-Zwischenhirnsystem von Scyllium stellare. Z Zellforsch 37:196–204

    CAS  PubMed  Google Scholar 

  • Schmidt AW, Bodznick D (1987) Afferent and efferent connections of the vestibulolateral cerebellum of the little skate, Raja erinacea. Brain Behav Evol 30:282–302

    CAS  PubMed  Google Scholar 

  • Schroeder DM, Ebbesson SOE (1974) Nonolfactory telencephalic afferents in the nurse shark (Ginglymostoma cirratum). Brain Behav Evol 9:121–155

    CAS  PubMed  Google Scholar 

  • Schweitzer J (1983) The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornbak ray, Platyrhinoidis triseriata. J Comp Physiol A 153:331–341

    Google Scholar 

  • Schweitzer J (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata). J Comp Physiol [A] 158:43–58

    CAS  Google Scholar 

  • Sivak JG (1990) Elasmobranch visual optics. J Exp Zool [Suppl] 5:13–21

    Google Scholar 

  • Smeets WJAJ (1981a) Retinofugal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 195:1–11

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ (1981b) Efferent tectal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 195:13–23

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ (1982) The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 205:139–152

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ 1983 The secondary olfactory connections in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 218:334–344

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ (1990) The telencephalon of cartilaginous fishes. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 3–30

    Google Scholar 

  • Smeets WJAJ (1992) Comparative aspects of basal forebrain organization in vertebrates. Eur J Morphol 30:23–36

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ (1994) Catecholamine systems in the CNS of reptiles: structure and functional correlations. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 103–133

    Google Scholar 

  • Smeets WJAJ, Boord RL (1985) Connections of the lobus inferior hypothalami of the clearnose skate, Raja eglanteria. J Comp Neurol 234:380–392

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Gonzalez A (1990) Are putative dopamine-accumulating cell bodies in the hypothalamic periventricular organ a primitive brain character of nonmammalian vertebrates? Neurosci Lett 114:248–252

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R (1976) Topological analysis of the brain stem of the sharks Squalus acanthias and Scyliorhinus canicula. J Comp Neurol 165:333–368

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Northcutt RG (1987) At least one thalamotelencephalic pathway in cartilaginous fishes projects to the medial pallium. Neurosci Lett 78:277–282

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Reiner A (1994) Catecholamines in the CNS of vertebrates: current concepts of evolution and functional significance. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 463–481

    Google Scholar 

  • Smeets WJAJ, Timerick SJB (1981) Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 202:473–491

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smeets WJAJ, Kidjan M, Jonker AJ (1991) α-MPT does not affect dopamine levels in the periventricular organ of lizards. Neuroreport 2:369–372

    CAS  PubMed  Google Scholar 

  • Snow PJ, Plenderleith MB, Wright LL (1993) Quantitative study of primary sensory neurone populations of three species of elasmobranch fish. J Comp Neurol 334:97–103

    CAS  PubMed  Google Scholar 

  • Speidel CC (1922) Further comparative studies in other fishes of cells that are homologous to the large irregular glandular cells in the spinal cord of the skates. J Comp Neurol 34:303–317

    Google Scholar 

  • Sperry DG, Boord RL (1992) Central location of the motoneurons that supply the cucullaris (trapezius) of the clearnose skate, Raja eglanteria. Brain Res 582:312–319

    CAS  PubMed  Google Scholar 

  • Spivack WD, Zhong N, Salerno S, Saavedra RA, Gould RM (1993) Molecular cloning of the myelin basic proteins in the shark, Squalus acanthias, and the ray, Raja erinacea. J Neurosci Res 35:577–584

    CAS  PubMed  Google Scholar 

  • Stell WK (1984) Luteinizing hormone-releasing hormone (LHRH)-and pancreatic polypeptide (PP)-immunoreactive neurons in the terminal nerve of spiny dogfish, Squalus acanthias. Anat Rec 208:173A–174A

    Google Scholar 

  • Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminals: an LHRH-and FMRF-amideimmunoreactive olfactory pathway. Proc Natl Acad Sci USA 81:940–944

    CAS  PubMed  Google Scholar 

  • Sterzi G (1912) Il sistema nervosos centrale dei Vertebrati. Pesci, vol II. Draghi, Padova

    Google Scholar 

  • Stieda L (1873) Ãœber den Bau des Rückenmarkes der Rochen und der Haie. Z Wiss Zool 23:435–442

    Google Scholar 

  • Stuesse SL, Cruce WLR (1991) Immunohistochemical localization of serotoninergic, enkephalinergic, and catechol-aminergic cells in the brainstem of a cartilaginous fish, Hydrolagus collei. J Comp Neurol 309:535–548

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Cruce WLR (1992) Distribution of tyrosine hydroxylase, serotonin, and leu-enkephalin immunoreactive cells in the brainstem of a shark, Squalus acanthias. Brain Behav Evol 39:77–92

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Cruce WLR, Northcutt RG (1990) Distribution of tyrosine hydroxylase-and serotonin-immunoreactive cells in the central nervous system of the thornback guitarfish, Platyrhinoidis triseriata. J Chem Neuroanat 3:45–58

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Cruce WLR, Northcutt RG (1991a) Localization of serotonin, tyrosine hydroxylase, and leu-enkephalin immunoreactive cells in the brainstem of the horn shark, Heterodontus francisci. J Comp Neurol 308:277–292

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Cruce WLR, Northcutt RG (1991b) Serotoninergic and enkephalinergic cell groups in the reticular formation of the bat ray and two skates. Brain Behav Evol 38:39–52

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Stuesse DC, Cruce WLR (1992) Immunohistochemical localization of serotonin, leu-enkephalin, tyrosine hydroxylase, and substance P within the visceral sensory area of cartilaginous fish. Cell Tissue Res 268:305–316

    CAS  PubMed  Google Scholar 

  • Stuesse SL, Cruce WLR, Northcutt RG (1994) Localization of catecholamines in the brains of Chondrichthyes (cartilaginous fishes). In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 21–47

    Google Scholar 

  • Sumpter JP, Denning-Kendall PA, Lowry PJ (1984) The involvement of melanotrophins in physiological colour change in the dogfish Scyliorhinus canicula. Gen Comp Endocrinol 56:360–367

    CAS  PubMed  Google Scholar 

  • Szabo T (1955) Quelques precisions sur le noyau de commande centrale de la decharge electrique chez la Raie (Raja clavata). J Physiol (Paris) 47:283–285

    CAS  Google Scholar 

  • Tanaka S (1988) A macroscopical study of the trapezius muscle of sharks with reference to the topographically related nerves and vein. Anat Anz 165:1–21

    Google Scholar 

  • Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8:143–150

    CAS  PubMed  Google Scholar 

  • Tester AL (1963) Olfaction, gustation, and the common chemical sense in sharks. In: Gilbert PW (ed) Sharks and survival. Heath, Lexington, pp 255–282

    Google Scholar 

  • Timerick SJB, Paul DH, Roberts BL (1990) Dynamic characteristics of vestibular-driven compensatory fin movements of the dogfish. Brain Res 516:318–321

    CAS  PubMed  Google Scholar 

  • Timerick SJB, Roberts BL, Paul DH (1992) Brainstem neurons projecting to different levels of the spinal cord of the dogfish Scyliorhinus canicula. Brain Behav Evol 39:93–100

    CAS  PubMed  Google Scholar 

  • Tong SL, Bullock TH (1982) The sensory functions of the cerebellum of the thornback ray, Platyrhinoidis triseriata. J Comp Physiol [A] 148:399–410

    Google Scholar 

  • Vallarino M, Ottonello I (1987) Neuronal localization of immunoreactive adrenocorticotropin-like substance in the hypothalamus of elasmobranch fishes. Neurosci Lett 80:1–6

    CAS  PubMed  Google Scholar 

  • Vallarino M, Danger JM, Fasolo A, Pelletier G, Saint-Pierre S, Vaudry H (1988a) Distribution and characterization of neuropeptide Y in the brain of an elasmobranch fish. Brain Res 448:67–76

    CAS  PubMed  Google Scholar 

  • Vallarino M, Ottonello I, D’Este L, Renda T (1988b) Sauvagine/urotensin I-like immunoreactivity in the brain of the dogfish, Scyliorhinus canicula. Neurosci Lett 95:119–124

    CAS  PubMed  Google Scholar 

  • Vallarino M, Fasolo A, Ottonello I, Perroteau I, Tonon MC, Vandesande F, Vaudry H (1989) Localization of corticotropin-releasing hormone (CRF)-like immunoreactivity in the central nervous system of the elasmobranch fish, Scyliorhinus canicula. Cell Tissue Res 258:541–546

    CAS  Google Scholar 

  • Vallarino M, D’Este L, Negri L, Ottonello I, Renda T (1990a) Occurrence of bombesin-like immunoreactivity in the brain of the cartilaginous fish, Scyliorhinus canicula. Cell Tissue Res 259:177–181

    Google Scholar 

  • Vallarino M, Viglietti-Panzica C, Panzica GC (1990b) Immunocytochemical localization of vasotocin-like immunoreactivity in the brain of the cartilaginous fish, Scyliorhinus canicula. Cell Tissue Res 262:507–513

    CAS  Google Scholar 

  • Vallarino M, Bucharles C, Facchinetti F, Vaudry H (1994) Immunocytochemical evidence for the presence of metenkephalin and leu-enkephalin in distinct neurons in the brain of the elasmobranch fish Scyliorhinus canicula. J Comp Neurol 347:585–597

    CAS  PubMed  Google Scholar 

  • van de Kamer JC, Wilschut IJC, Heussen AMA (1973) On the presence and localization of glycogen accumulations inside coronet cells of the saccus vasculosus of the dogfish (Scyliorhinus caniculus). Z Zellforsch 140:277–290

    PubMed  Google Scholar 

  • Vesselkin NP, Kovacevic N (1973) Nonolfactory telencephalic afferent projections in elasmobranch fishes. Zh Evol Ion Biokhim Fiziol (Tome) 9:585–592

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Manzanoe Silva MJ, Aros B (1983) The pineal organ of Raia clavata: opsin immunoreactivity and ultrastructure. Cell Tiss Res 228:139–148

    CAS  Google Scholar 

  • Von Arx WS (1962) An introduction to physical oceanography. Addison-Wesley, Reading-London

    Google Scholar 

  • Von Harrach M (1970) Elektronenmikroskopische Beobachtungen am Saccus vasculosus einiger Knorpelfische. Z Zellforsch 105:188–209

    Google Scholar 

  • Von Kupffer C (1906) Die Morphogenie der Centralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbeltiere, vol II, part 3. Fischer, Jena, pp 1–272

    Google Scholar 

  • Voorhoeve JJ (1917) Over den Bouw van de kleine Hersenen der Plagiostomen. Thesis, Amsterdam University

    Google Scholar 

  • Waehneldt TV (1990) Phylogeny of myelin proteins. Ann NY Acad Sci 605:15–28

    CAS  PubMed  Google Scholar 

  • Wallén P (1982) Spinal mechanisms controlling locomotion in dogfish and lamprey. Acta Physiol Scand [Suppl] 503:3–45

    Google Scholar 

  • Wallenberg A (1907) Beiträge zur Kenntnis des Gehirns der Teleostier und Selachier. Anat Anz 31:369–399

    Google Scholar 

  • Watanabe A (1966) The saccus vasculosus of the ray (Dasyatis akajei). Arch Hist Japon 27:427–449

    CAS  Google Scholar 

  • Weinberg E (1928) The mesencephalic root of the fifth nerve. A comparative study. J Comp Neurol 46:249–405

    Google Scholar 

  • Williams BJ, Livingston CA, Leonard RB (1984) Spinal cord pathways involved in initiation of swimmming in the stingray, Dasyatis sabina: spinal cord stimulation and lesions. J Neurophysiol 51:578–591

    CAS  PubMed  Google Scholar 

  • Williams HT (1973) The telencephalon of the newborn dogfish shark, Squalus acanthias. J Hirnforsch 14:261–285

    CAS  PubMed  Google Scholar 

  • Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord. Plenum, New York

    Google Scholar 

  • Wilson JF, Dodd JM (1973a) The role of the pineal complex and lateral eyes in the colour change response of the dogfish, Scyliorhinus canicula L. J Endocrinol 58:591–598

    CAS  PubMed  Google Scholar 

  • Wilson JF, Dodd JM (1973b) Effects of pharmacological agents on the in vivo release of melanophore-stimulating hormone in the dogfish, Scyliorhinus canicula. Gen Comp Endocrinol 20:556–566

    CAS  PubMed  Google Scholar 

  • Wilson JF, Goos HJT, Dodd JM (1974) An investigation of the neural mechanisms controlling the colour change responses of the dogfish Scyliorhinus canicula L by mesencephalic and diencephalic lesions. Proc R Soc Lond B 187:171–190

    CAS  PubMed  Google Scholar 

  • Withington-Wray DJ, Roberts BL, Taylor EW (1986) The topographical organization of the vagal motor column in the elasmobranch fish, Scyliorhinus canicula L. J Comp Neurol 248:95–104

    CAS  PubMed  Google Scholar 

  • Witkovsky P, Roberts BL (1975) The light microscopical structure of the mesencephalic nucleus of the fifth nerve in the selachian brain. Proc R Soc Lond B 190:457–471

    CAS  PubMed  Google Scholar 

  • Witkovsky P, Powell CC, Brunken WJ (1980) Some aspects of the organization of the optic tectum of the skate Raja. Neuroscience 5:1989–2002

    CAS  PubMed  Google Scholar 

  • Wourms JP (1977) Reproduction and development in chondrichthyan fishes. Am Zool 17:379–410

    Google Scholar 

  • Wright DE, Demski LS (1991) Gonadotropin hormonereleasing hormone (GnRH) immunoreactivity in the mesencephalon of sharks and rays. J Comp Neurol 307:49–56

    CAS  PubMed  Google Scholar 

  • Wunderer H (1908) Ãœber Terminal Körperchen der Anamnien. Arch Mikr Anat 71:504–569

    Google Scholar 

  • Yamanaka S, Honma Y, Ueda S, Sano Y (1990) Immunohistochemical demonstration of serotonin neuron system in the central nervous system of the Japanese dogfisn, Scyliorhinus torazame (Chondrichthyes). J Hirnforsch 31:385–397

    CAS  PubMed  Google Scholar 

  • Young JZ (1933a) The autonomic nervous system of Selachians. Q J Microsc Sc 75:571–624

    Google Scholar 

  • Young JZ (1933b) Comparative studies on the physiology of the iris. I. Selachians. Proc R Soc Lond B 112:228–241

    CAS  Google Scholar 

  • Young JZ (1980) Nervous control of stomach movements in dogfishes and rays. J Mar Biol Assoc UK 60:1–17

    Google Scholar 

  • Ziegels J (1976) The vertebrate subcommissural organ: a structural and functional review. Arch Biol 87:429–476

    CAS  Google Scholar 

  • Ziegels J (1979) The subcommissural organ of submammalian vertebrates: a histochemical study. J Hirnforsch 20:11–18

    CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smeets, W.J.A.J. (1998). Cartilaginous Fishes. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics