Skip to main content

Monoclonal Antibody Therapy for Prostate Cancer

  • Chapter
Therapeutic Antibodies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 181))

Early detection of prostate cancer (PCa) and advances in hormonal and chemotherapy treatments have provided great clinical benefits to patients with early stages of the disease. However, a significant proportion of patients still progress to advanced, metastatic disease, for which no effective therapies are available. Therefore, there is a critical need for new treatment modalities, ideally targeted specifically to prostate cancer cells. The recent clinical and commercial successes of monoclonal antibodies (MAbs) have made them the most rapidly expanding class of therapeutics being developed for many disease indications, including cancer. PCa is well suited for antibody-based therapy due to the size and location of recurrent and metastatic tumors, and the lack of necessity to avoid targeting the normal prostate, a nonessential organ. These properties have fostered interest in the development and clinical evaluation of therapeutic MAbs directed to both well established and newly discovered targets in PCa. MAbs directed to established targets include those approved for other solid tumors, including anti-human epidermal growth factor receptor-2 (HER2) MAb trastuzumab, anti-epidermal growth factor receptor (EGFR) MAbs cetuximab and panitumumab, and the antivascular endothelial growth factor (VEGF) MAb bevacizumab. Genomics efforts have yielded a large number of novel, clinically relevant targets in PCa with the desirable expression profiling in tumor and normal tissues, and with an implicated role in tumor growth and spread. Growing efforts are directed to the development of naked or payload-conjugated therapeutic antibodies to these targets, and a variety of MAb products are currently progressing through preclinical and various stages of clinical development. The clinical experience with some of the commercialized MAb products points out specific challenges in conducting clinical trials with targeted therapy in PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol. 23(9):1147-1157

    PubMed  CAS  Google Scholar 

  • Adams TE, Epa VC, Garrett TP, Ward CW (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 57(7):1050-1093

    PubMed  CAS  Google Scholar 

  • Afar DE, Bhaskar V, Ibsen E et al. (2004) Preclinical validation of anti-TMEFF2-auristatin Econjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther. 3(8):921-932

    PubMed  CAS  Google Scholar 

  • Agus DB, Scher HI, Higgins B et al. (1999) Response of prostate cancer to anti Her-2/neu in androgen-dependent and independent human xenograft models. Cancer Res. 62:5485-5488

    Google Scholar 

  • Agus DB, Akita RW, Fox WD et al. (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2(2):127-137

    PubMed  CAS  Google Scholar 

  • Agus DB, Gordon M, Taylor RB et al. (2003) Clinical activity in a phase I trail of HER-2 targeted rhuMAb 2C4 (pertuzumab) in patients with advanced solid malignancies (AST). Proc Am Soc Clin Oncol 22 (abstr 771)

    Google Scholar 

  • Agus DB, Sweeney CJ, Morris M et al. (2005) Efficacy and safety of single agent pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in hormone refractory prostate cancer after failure of taxane-based therapy. J Clin Oncol. 23(16S):4624

    Google Scholar 

  • Allison JP (1994) CD28-B7 interactions in T-cell activation. Curr Opin Immunol. 6(3):414-419

    PubMed  CAS  Google Scholar 

  • Amara N, Palapattu GS, Schrage M et al. (2001) Prostate Stem Cell Antigen is overexpressed in human transitional cell carcinoma. Cancer Res 61:4660-4665

    PubMed  CAS  Google Scholar 

  • Argani P, Rosty C, Reiter RE et al. (2001) Discovery of new markers of cancer through serial analysis of gene expression: Prostate Stem Cell Antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320-4324

    PubMed  CAS  Google Scholar 

  • Bander NH, Nanus DM, Milowsky MI et al. (2003) Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol. 30(5):667-676

    PubMed  Google Scholar 

  • Bander NH, Nanus DM, Milowsky MI et al. (2005) Phase I trail of177 Lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, independent prostate cancer. J Clon Oncol 23(21):4591-4601

    CAS  Google Scholar 

  • Baselga J (2001) The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer 37(Suppl 4):S16-S22

    PubMed  CAS  Google Scholar 

  • Bok RA, Halabi S, Fei DT et al. (2001) Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 61(6):2533-2536

    PubMed  CAS  Google Scholar 

  • Bonner JA, Giralt J, Harari PM et al. (2004) Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: A phase III study of high dose radiation therapy with or without cetuximab. J Clin Oncol 22:5507

    Google Scholar 

  • Borgstrom P, Bourdon MA, Hillan KJ (1998) Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35(1):1-10

    PubMed  CAS  Google Scholar 

  • Burtrum D, Zhu Z, Lu D et al. (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res. 63(24):8912-8921

    PubMed  CAS  Google Scholar 

  • Burtscher I, Christofori G (1999) The IGF/IGF-1 receptor signaling pathway as a potential target for cancer therapy. Drug Resist Updat 2(1):3-8

    PubMed  CAS  Google Scholar 

  • Challita-Eid PM, Soudabeh E, Zili A et al. (2004) Targeting STEAP-1 with Monoclonal Antibodies Inhibits Growth of Human Cancer Xenografts in Mice. AACR annual meeting: late-breaking abstract

    Google Scholar 

  • Challita-Eid PM, Morrison KR, Etessami S et al. (2007) Monoclonal Antibodies to STEAP-1 Inhibit Intercellular Communication in vitro and Growth of Human Tumor Xenografts in vivo. Cancer Res. 67:5798-5805

    PubMed  CAS  Google Scholar 

  • Chang SS, O’Keefe DS, Bacich DJ et al. (1999) Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 5(10):2674-2681

    PubMed  CAS  Google Scholar 

  • Citri A, Yarden Y (2006) EGF-ERBB signaling: towards the systems level. Nat Rev Mol Cell Biol 7(7):505-516

    PubMed  CAS  Google Scholar 

  • Cohen BD, Baker DA, Soderstrom C et al. (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11(5):2063-2073

    PubMed  CAS  Google Scholar 

  • Conway RE, Petrovic N, Li Z et al. (2006) Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol 26(14):5310-5324

    PubMed  CAS  Google Scholar 

  • Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5(3):264-265

    Google Scholar 

  • Cunningham D, Humblet Y, Siena S et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337-345

    PubMed  CAS  Google Scholar 

  • Di Lorenzo G, Tortora G, D’Armiento FP et al. (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8(11):3438-3444

    PubMed  CAS  Google Scholar 

  • Di Marco E, Pierce JH, Fleming TP et al. (1989) Autocrine interaction between TGF alpha and the EGF-receptor: quantitative requirements for induction of the malignant phenotype. Oncogene 4 (7):831-838

    PubMed  CAS  Google Scholar 

  • Djavan B, Waldert M, Seitz C, Marberger M (2001) Insulin-like growth factors and prostate cancer. World J Urol (4):225-233

    Google Scholar 

  • Doronina SO, Toki BE, Torgov MY et al. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778-784

    PubMed  CAS  Google Scholar 

  • Duque JL, Loughlin KR, Adam RM et al. (1999) Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 54(3):523-527

    PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669

    PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP et al. (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391-400

    PubMed  CAS  Google Scholar 

  • Fishwild DM, O’Donnell SL, Bengoechea T et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14(7):845-851

    PubMed  CAS  Google Scholar 

  • Galsky MD, Eisenberger M, Cooper-Moore et al. (2005) Phase 1/2 dose escalation trial of the prostate specific membrane antigen (PSMA)-targeted immunocojugate, MLN2704, in patients with progressive metastatic androgen-dependent prostate cancer. Proc Am Soc Clin Oncol 24:2005

    Google Scholar 

  • Gerritsen W, Van Den Eertwegh AJ, Giaccone G (2006) A dose escalation trail GM-CSF gene transduced allogeneic prostate cancer cellular immunotherapy in combination with fully human anti-CTLA antibody (MDX-010, ipilimumab) in patients with metastatic hormone-refractory prostate cancer (mHRPC). J Clin Oncol 24(18S):2500

    Google Scholar 

  • Gery S, Sawyers CL, Agus DB et al. (2002) TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Oncogene 21:4739-4746

    PubMed  CAS  Google Scholar 

  • Glynne-Jones E, Harper ME, Seery LT et al. (2001) TENB2, a proteoglycan identified in prostate cancer that is associated with disease progression and androgen independence. Int J Cancer 94:178-184

    PubMed  CAS  Google Scholar 

  • Goetsch L, Gonzalez A, Leger O et al. (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113 (2):316-328

    PubMed  CAS  Google Scholar 

  • Griffiths AD, Hoogenboom HR (1993) Building an in vitro immune system in: protein engineering of antibody molecules for prophylactic and therapeutic antibodies in man. Clark M (eds) Nottingham Academic Titles, pp 45-64

    Google Scholar 

  • Grothey A, Voigt W, Schober C et al. (1999) The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol 125(3-4):166-73

    PubMed  CAS  Google Scholar 

  • Grzmil M, Hemmerlein B, Thelen P et al. (2004) Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol 202(1):50-59

    PubMed  CAS  Google Scholar 

  • Gu Z, Thomas G, Yamashiro J et al. (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19 (10):1288-1296

    PubMed  CAS  Google Scholar 

  • Gu Z, Yamashiro J, Kono E, Reiter RE (2005) Anti-prostate stem cell antigen monoclonal antibody 1G8 induces cell death in vitro and inhibits tumor growth in vivo via a Fc-independent mechanism. Cancer Res 65(20):9495-9500

    PubMed  CAS  Google Scholar 

  • Han KR, Seligson DB, Liu X et al. (2004) Prostate stem cell antigen expression is associated with gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol 171 (3):1117-11121

    PubMed  CAS  Google Scholar 

  • Henry MD, Wen S, Silva MD (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64 (21):7995-8001

    PubMed  CAS  Google Scholar 

  • Hubert RS, Vivanco I, Chen E et al. (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96(25):14523-14528

    PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335-2342

    PubMed  CAS  Google Scholar 

  • Jakobovits A (1998) The long-awaited magic bullets: therapeutic human monoclonal antibodies from transgenic mice. Expert Opin Investig Drugs 7(4):607-614

    PubMed  CAS  Google Scholar 

  • Jakobovits A, Gudas JM, Kanner SB et al. (2005) Therapeutic potential of AGS-PSCA: A fully human monoclonal antibody to prostate stem cell antigen (PSCA) for the treatment of prostate pancreatic cancers. J Clin Oncol 23(16S):4722

    Google Scholar 

  • Jemel A, Murray T, Ward E et al. (2005) Cancer Statistics, 2005. CA Cancer J Clin 55:10-30

    Google Scholar 

  • Kahn D, Williams RD, Manyak MJ et al. (1998) 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The Prosta Scint Study Group J Urol 159(6):2041-2046

    CAS  Google Scholar 

  • Fishwild DM, O’Donnell SL, Bengoechea T et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14(7):845-851

    PubMed  CAS  Google Scholar 

  • Galsky MD, Eisenberger M, Cooper-Moore et al. (2005) Phase 1/2 dose escalation trial of the prostate specific membrane antigen (PSMA)-targeted immunocojugate, MLN2704, in patients with progressive metastatic androgen-dependent prostate cancer. Proc Am Soc Clin Oncol 24:2005

    Google Scholar 

  • Gerritsen W, Van Den Eertwegh AJ, Giaccone G (2006) A dose escalation trail GM-CSF gene transduced allogeneic prostate cancer cellular immunotherapy in combination with fully human anti-CTLA antibody (MDX-010, ipilimumab) in patients with metastatic hormone-refractory prostate cancer (mHRPC). J Clin Oncol 24(18S):2500

    Google Scholar 

  • Gery S, Sawyers CL, Agus DB et al. (2002) TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Oncogene 21:4739-4746

    PubMed  CAS  Google Scholar 

  • Glynne-Jones E, Harper ME, Seery LT et al. (2001) TENB2, a proteoglycan identified in prostate cancer that is associated with disease progression and androgen independence. Int J Cancer 94:178-184

    PubMed  CAS  Google Scholar 

  • Goetsch L, Gonzalez A, Leger O et al. (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113 (2):316-328

    PubMed  CAS  Google Scholar 

  • Griffiths AD, Hoogenboom HR (1993) Building an in vitro immune system in: protein engineering of antibody molecules for prophylactic and therapeutic antibodies in man. Clark M (eds) Nottingham Academic Titles, pp 45-64

    Google Scholar 

  • Grothey A, Voigt W, Schober C et al. (1999) The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol 125(3-4):166-73

    PubMed  CAS  Google Scholar 

  • Grzmil M, Hemmerlein B, Thelen P et al. (2004) Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol 202(1):50-59

    PubMed  CAS  Google Scholar 

  • Gu Z, Thomas G, Yamashiro J et al. (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19 (10):1288-1296

    PubMed  CAS  Google Scholar 

  • Gu Z, Yamashiro J, Kono E, Reiter RE (2005) Anti-prostate stem cell antigen monoclonal antibody 1G8 induces cell death in vitro and inhibits tumor growth in vivo via a Fc-independent mechanism. Cancer Res 65(20):9495-9500

    PubMed  CAS  Google Scholar 

  • Han KR, Seligson DB, Liu X et al. (2004) Prostate stem cell antigen expression is associated with gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol 171 (3):1117-11121

    PubMed  CAS  Google Scholar 

  • Henry MD, Wen S, Silva MD (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64 (21):7995-8001

    PubMed  CAS  Google Scholar 

  • Hubert RS, Vivanco I, Chen E et al. (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96(25):14523-14528

    PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335-2342

    PubMed  CAS  Google Scholar 

  • Jakobovits A (1998) The long-awaited magic bullets: therapeutic human monoclonal antibodies from transgenic mice. Expert Opin Investig Drugs 7(4):607-614

    PubMed  CAS  Google Scholar 

  • Jakobovits A, Gudas JM, Kanner SB et al. (2005) Therapeutic potential of AGS-PSCA: A fully human monoclonal antibody to prostate stem cell antigen (PSCA) for the treatment of prostate pancreatic cancers. J Clin Oncol 23(16S):4722

    Google Scholar 

  • Jemel A, Murray T, Ward E et al. (2005) Cancer Statistics, 2005. CA Cancer J Clin 55:10-30

    Google Scholar 

  • Kahn D, Williams RD, Manyak MJ et al. (1998) 111 Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The Prosta Scint Study Group J Urol 159(6):2041-2046

    CAS  Google Scholar 

  • Kirschenbaum A, Wang JP, Ren M et al. (1997) Inhibition of vascular endothelial cell growth factor suppresses the in vivo growth of human prostate tumors. Urol Oncol 3:3-10

    CAS  Google Scholar 

  • Koeppen HKW, Wright BD, Burt AD et al. (2001) Overexpression of HER-2 in solid tumors: an immunohistochemical survey. Histopathology 3:96-104

    Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495-497

    PubMed  CAS  Google Scholar 

  • Lam JS, Yamashiro J, Shintaku IP et al. (2005) Prostate stem cell antigen is over expressed in prostate cancer metastases. Clin Cancer Res 11(7):2591-2596

    PubMed  CAS  Google Scholar 

  • Lara PN Jr, Chee KG, Longmate J et al. (2004) Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium screening and Phase II trial. Cancer 100:2125-2131

    PubMed  CAS  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734-1736

    PubMed  CAS  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 9:1117-1125

    Google Scholar 

  • Ma D, Hopf CE, Malewicz AD et al. (2006) Potent antitumor activity of an auristatinconjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res.12(8):2591-2596

    PubMed  CAS  Google Scholar 

  • Maloney EK, McLaughlin JL, Dagdigian NE (2003) An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res. 63(16):5073-83

    PubMed  CAS  Google Scholar 

  • Marengo SR, Sikes RA, Anezinis P et al. (1997) Metastasis induced by overexpression of p185neuT after orthotropic injection into a prostatic epithelial cell line (NbE). Mol Carcinog. 19(3):165-175

    PubMed  CAS  Google Scholar 

  • Melnyk O, Zimmerman M, Kim KJ et al. (1999) Neutralizing anti-vascular endothelial growth factor antibody inhibits further growth of established prostate cancer and metastases in a preclinical model. J Urol 161(3):960-963

    PubMed  CAS  Google Scholar 

  • Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Semi Oncol 33:369-385

    CAS  Google Scholar 

  • Mendez MJ, Green LL, Corvalan JR et al. (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15(2):146-156

    PubMed  CAS  Google Scholar 

  • Milowsky MI, Nanus DM, Kostakoglu L et al. (2004) Phase I trial of yttrium-90-labeled antiprostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22(13):2522-2531

    PubMed  CAS  Google Scholar 

  • Milowsky MI, Galasky, George DJ et al. (2006) Phase I/II trail of the prostate-specific membrane antigen (PSMA)-targeted immunoconjugate MLN 2704 in patients (pts) with progressive metastatic castratin resistant prostate cancer (CRPC). J Clin Oncol:4500

    Google Scholar 

  • Morris MJ, Reuter VE, Kelly WK (2002): HER-2 profiling and targeting in prostate carcinoma: a Phase II trial of trastuzumab alone and with paclitaxel. Cancer 94:980-986

    PubMed  CAS  Google Scholar 

  • Morrison SL, Oi VT (1975) Chimeric immunoglobulin genes. Academic, London, UK, pp 260-274

    Google Scholar 

  • Nanus DM, Milowsky MI, Kostakoglu L et al. (2003) Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 170(6 Pt 2):S84-S88

    PubMed  Google Scholar 

  • Nishio Y, Yamada Y, Kokubo H et al. (2006) Prognostic significance of immunohistochemical expression of the HER-2/neu oncoprotein in bone metastatic prostate cancer. Urology 68 (1):110-115

    PubMed  Google Scholar 

  • Olayioye MA, Neve RM, Lane HA, Haynes NE (2000) The ErbB signaling network receptor heterodimerization in development and cancer. EMBO J 19:3159-3167

    PubMed  CAS  Google Scholar 

  • Pauletti G, Dandekar S, Rong H et al. (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18(21):3651-3664

    PubMed  CAS  Google Scholar 

  • Peeters M, Van Cutsem E, Siena S et al. (2006) A phase 3 multicenter, randomized controlled trial (RCT) of panitumumab plus best supportive care (BSC) vs BSC alone in patients (pts) with metastatic colorectal cancer (mCRC). Proc Am Assoc Cancer Res 47:Abstract CP-1

    Google Scholar 

  • Pegram M, Slamon D (2000) Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27(Suppl 9):13-9

    PubMed  CAS  Google Scholar 

  • Picus J, Halabi S, Rini B et al. (2003) The use of bevacizumab (B) with docetaxel (D) and estramustine (E) in hormone refractory prostate cancer (HRPC): initial results of CALGB 90006. Proc Am Soc Clin Oncol 22:393

    Google Scholar 

  • Pietrzkowski Z, Mulholland G, Gomella L et al. (1993) Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor. Cancer Res 53(5):1102-1106

    PubMed  CAS  Google Scholar 

  • Pinto JT, Suffoletto BP, Berzin TM et al. (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res. 2(9):1445-1451

    PubMed  CAS  Google Scholar 

  • Pound CR, Partin AW, Eisenberger MA et al. (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281:1591-1597

    PubMed  CAS  Google Scholar 

  • Prewett M, Rockwell P, Rockwell RF et al. (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol (6):419-427

    Google Scholar 

  • Reese DM, Fratesi P, Corry M et al. (2001) A phase II trail of humanized anti-vascular endothelial growth factor antibody for the treatment of androgen-independent prostate cancer. Pros J 3 (2):65-70

    Google Scholar 

  • Reiter RE, Gu Z, Watabe T et al. (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 95:1735-1740

    PubMed  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H et al. (1988) Reshaping human antibodies for therapy. Nature 332(24):323-327

    PubMed  CAS  Google Scholar 

  • Ross JS, Gray KE, Webb IJ et al. (2005) Antibody-based therapeutics: focus on prostate cancer. Cancer Metastasis Rev 24(4):521-537

    PubMed  CAS  Google Scholar 

  • Ross S, Spencer SD, Holcomb I (2002) Prostate Stem Cell Antigen as Therapy Target: Tissue Expression and in Vivo Efficacy of an immunoconjugate. Cancer Res 62:2546-2553

    PubMed  CAS  Google Scholar 

  • Saad F, Schulman CC (2004) Role of bisphosphonates in prostate cancer. Eur Urol 45:26-34

    PubMed  CAS  Google Scholar 

  • Saffran DC, Raitano AB, Hubert RS et al. (2001) Anti-PSCA monoclonal antibodies inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts Proc Natl Acad Sci USA 98(5):2658-2663

    CAS  Google Scholar 

  • Scher HI, (2000) HER2 in prostate cancer-a viable target or innocent bystander? J Natl Cancer Inst 92(23):1866-1868

    PubMed  CAS  Google Scholar 

  • Sherwood ER, Lee C (1995) Epidermal growth factor-related peptides and the epidermal growth factor receptor in normal and malignant prostate. World J Urol 13(5):290-296

    PubMed  CAS  Google Scholar 

  • Sebastian S, Settleman J, Reshkin SJ et al. (2006) The complexity of targeting EGFR signaling in cancer: from expression to turnover. Biochim Biophys Acta 1766(1):120-139

    PubMed  CAS  Google Scholar 

  • Signoretti S, Rodolfo M, Manola J et al. (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92(23):1866-1888

    Google Scholar 

  • Silberman MA, Partin AW, Veltri RW, Epstein JI (1997) Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer 79(4):772-779

    PubMed  CAS  Google Scholar 

  • Silver DA, Pellicer I, Fair WR et al. (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res (1):81-85

    Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344 (11):783-792

    PubMed  CAS  Google Scholar 

  • Slovin SF, Kelly WK, Cohen R et al. (1997) Epidermal growth factor receptor (EGFr) monoclonal antibody (MoAb) C225 and doxorubicin (DOC) in androgen-dependent (AI) prostate cancer (PC): results of phase Ib/IIa study. Proc Am Soc Clin Oncol 16(311a):Abstract 1108

    Google Scholar 

  • Small E, Higano C, Tchekmedyian et al. (2006) Randomized phase II study comparing 4 monthly doses of ipilimumab (MDX-010) as a single agent or in combination with a single dose of docetaxel in patients with hormone-refractory prostate cancer. J Clin Oncol 24(18S):4609

    Google Scholar 

  • Smith SV (2004) Technology evaluation: cetuximab mertanisine. ImmunoGen. Curr Opin Mol Therap 6:666-674

    CAS  Google Scholar 

  • Smith-Jones PM, Vallabhajosula S, Navarro V et al. (2003) Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med 44(4):610-617

    PubMed  CAS  Google Scholar 

  • Solit DB, Angus DB (2001) HER-kinase-directed therapy of prostate cancer. Prostate J 3:53-58

    Google Scholar 

  • Tannock IF, de Wit R, Berry WR et al. (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502-1512

    PubMed  CAS  Google Scholar 

  • Valentinis B, Baserga R (2001) IGF-I receptor signaling in transformation and differentiation. Mol Pathol 54(3):133-137

    PubMed  CAS  Google Scholar 

  • Van Cutsem E, Peeters M, Siena S et al. (2007) An open-label, randomized, phase 3 clinical trial of panitumumab plus best supportive care versus best supportive care in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658-1664

    PubMed  CAS  Google Scholar 

  • Weidner N, Carroll PR, Flax J et al. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143(2):401-409

    PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137-1146

    PubMed  CAS  Google Scholar 

  • Wu JD, Odman A, Higgins LM et al. (2005) In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 11(8):3065-3074

    PubMed  CAS  Google Scholar 

  • Wu JD, Haugk K, Coleman I et al. (2006) Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clin Cancer Res 12 (20):6153-6160

    PubMed  CAS  Google Scholar 

  • Wujcik D (2006) EGFR as a target: rationale for therapy. Semin Oncol Nurs. 22(1):5-9

    PubMed  Google Scholar 

  • Yang XD, Jia XC, Corvalan JR et al. (1999) Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 59(6):1236-1243

    PubMed  CAS  Google Scholar 

  • Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38 (1):17-23

    PubMed  CAS  Google Scholar 

  • Yang XD, Roskos L, Davis G et al. (2005) From XenoMouse technology to panitumumab (ABXEGF). The Oncogenomics Handbook, pp 647-657

    Google Scholar 

  • Yeon CH, Pegram MD (2005) Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer. Invest New Drugs 23(5):391-409

    PubMed  CAS  Google Scholar 

  • Zhao XY, Schneider D, Biroc SL et al. (2005) Targeting Tomoregulin for Radioimmunotherapy of prostate cancer. Cancer Res 7:2846

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobovits, A. (2008). Monoclonal Antibody Therapy for Prostate Cancer. In: Chernajovsky, Y., Nissim, A. (eds) Therapeutic Antibodies. Handbook of Experimental Pharmacology, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73259-4_11

Download citation

Publish with us

Policies and ethics