Skip to main content

Abstract

Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that BMD only partly explains bone strength. Quantitative assessment of macro-structural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X-ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (µCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance µmR. Volumetric QCT, hrCT, and hrMR are generally applicable in vivo; µCT and µmR are principally applicable in vitro. Despite progress remain. The important balances between spatial resolution and sampling size, or between signal-to-noise ratio and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods vs their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry vs the more complex architectural features of bone, or the deeper research requirements vs the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be addressed further. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, vs their monitoring applications, requiring high precision or reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adapted in part from Genant HK, Gordon C, Jiang Y, Lang TF, Link TM Majumdar S (1999) Advanced imaging of bone macro and micro structure Bone 25:149–152

    Article  PubMed  CAS  Google Scholar 

  • Antich P, Mason R, McColl R, Zerwech J, Pak C (1994) Trabecular architecture studies by 3D MRI microscopy in bone biopsies. J Bone Miner Res 9S1:327

    Google Scholar 

  • Backstroem M, Armbrecht G, Beller G, Reeve J, Alexandre C, Rizzoli R, Berthier A, Braak L, Binot R, Koller B, Felsenberg D (2005) First data of forearm and tibia bone micro architecture in young, healthy women, using high resolution 3DpQCT in vivo. J Bone Miner Res 20(Suppl 1):S336

    Google Scholar 

  • Bauer JS, Mueler D, Fischbeck M, Eckstein F, Rummeny EJ, Link TM (2004) High resolution spiral-CT for the assessment of osteoporosis: Which site of the spine and region of the vertebra is best suited to obtain trabecular bone structural parameters? J Bone Miner Res 19:S169

    Article  Google Scholar 

  • Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 99:13049–13054

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Crawford RP, Palermo L, Bilezikian JP, Greenspan S, Keaveny TM (2005) Finite element biomechanical analysis of the PTH and alendronate (PaTH) study: PTH increases vertebral strength by altering both average density and density distribution. J Bone Miner Res 20(Suppl 1):S15

    Google Scholar 

  • Bogado CE, Zanchetta JR, Mango A, Mathisen AL, Fox J, Newman MK (2005) Effects of parathyroid hormone 1–84 on cortical and trabecular bone at the hip as assessed by QCT: results at 18 months from the TOP study. J Bone Miner Res 20(Suppl 1):S22

    Google Scholar 

  • Bonse U, Busch F, Gunnewig O, Beckmann F, Pahl R, Delling G, Hahn M, Graeff W (1994) 3D computed X-ray tomography of human cancellous bone at 8 µm spatial and 10-4 energy resolution. Bone Mineral 25:25–38

    CAS  Google Scholar 

  • Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, Lundy MW, Hartke JR, Sod EW (2001) Three-dimensional microimaging (MRmicro and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 15:101–110

    Article  Google Scholar 

  • Borah B, Ritman EL, Dufresne TE, Liu S, Chmielewski PA, Jorgensen SM, Reyes DA, Turner RT, Phipps RJ, Manhart MD, Sibonga JD (2004) Five year risedronate therapynor-malizes mineralization: synchrotron radiation micro computed tomography study of sequential triple biopsies. J Bone Miner Res 19:S308

    Article  Google Scholar 

  • Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) Non-invasive measurement of trabecular architecture by 3D-pQCT discriminates osteopenic women with and without fractures. J Bone Miner Res 20(Suppl 1):S91

    Google Scholar 

  • Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C (1992) CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51:8–13

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Wehrli FW, Williams JL, Kugelmass SD (1993) Relationship between NMR transverse relaxation, trabecular bone architecture, and strength. Proc Natl Acad Sci 90:10250–10254

    Article  PubMed  CAS  Google Scholar 

  • Chung HW, Wehrli FW, Williams JL, Kugelmass SD, Wehrli SL (1995a) Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res 10:803–811

    PubMed  CAS  Google Scholar 

  • Chung HW, Wehrli FW, Williams JL, Wehrli SL (1995b) Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 10:1452–1461

    PubMed  CAS  Google Scholar 

  • Crawford RP, Cann CE, Keaveny TM (2003a) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  • Crawford RP, Rosenberg WS, Keaveny TM (2003b) Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng 125:434–438

    Article  PubMed  Google Scholar 

  • Dambacher MA, Neff M, Radspieler H, Rizzoli R, Delmas P, Qin L (2005) Bone microarchitecture evaluation in vivo in humans. J Bone Miner Res 20(Suppl 1):S334

    Google Scholar 

  • Durand EP, Rüegsegger P (1992) High-contrast resolution of CT images for bone structure analysis. Med Phys 19:569–573

    Article  PubMed  CAS  Google Scholar 

  • Engelke K, Dix W, Graeff W et al. (1991) Quantitative microtomography and microradiography of bones using synchrotron radiation. Presented at the 8th Int Workshop on Bone Densitometry, Bad Reichenhall, Germany

    Google Scholar 

  • Engelke K, Graeff W, Meiss L, Hahn M, Delling G (1993) High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Invest Radiol 28:341–349

    Article  PubMed  CAS  Google Scholar 

  • Engelke K, Klifa C, Munch B, Glüer C, Genant H (1994) Morphological analysis of the trabecular network: the influence of image processing technique on structural parameters. Tenth Int Bone Densitometry Workshop, Venice, Italy. J Bone Miner Res 25(Suppl 2) S8

    Google Scholar 

  • Engelke K, Song SM, Glüer CC, Genant HK (1996) A digital model of trabecular bone. J Bone Miner Res 11:480–489

    PubMed  CAS  Google Scholar 

  • Engelke K, Karolczak M, Schaller S, Felsenberg D, Kalender WA (1998) A cone beam micro computed tomography (µCT) system for imaging of 3D trabecular bone structure. Presented at the 13th Int bone Densitometry Workshop, 4–8 October 1998, Wisconsin

    Google Scholar 

  • Engelke K, Hahn M, Takada M et al. (2001) Structural analysis of high resolution in vitro MR images compared to stained grindings. Calcif Tissue Int 68:163–171

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG, Cann CE, Hasegawa BH (1990) CT-derived finite element model to determine vertebral cortex strength In: Loew MH (ed) Medical imaging IC: image processing, vol 1233. SPIE, Newport Beach, California, pp 194–202

    Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    PubMed  CAS  Google Scholar 

  • Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    PubMed  CAS  Google Scholar 

  • Gordon CL, Lang TF, Augat P, Genant HK (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325

    Article  PubMed  CAS  Google Scholar 

  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  PubMed  CAS  Google Scholar 

  • Graeff W, Engelke K (1991) Microradiography and microtomography. In: Ebashi S, Koch M, Rubenstein E (eds) Handbook on synchrotron radiation. North-Holland, Amsterdam, pp 361–405

    Google Scholar 

  • Graeff C, Timm W, Farrerons J, Nickelsen TN, Blind E, Kekow J, Möricke R, Boonen S, Audran M, Glüer CC (2005) Structural analysis of vertebral trabecular bone structure allows to assess the effect of teriparatide treatment independently of BMD. J Bone Miner Res 20(Suppl 1):S411

    Google Scholar 

  • Hwang SN, Wehrli FW, Williams JL (1997) Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 24:1255–1261

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 194:55–59

    PubMed  CAS  Google Scholar 

  • Ito M, Ikeda K, Uetani M, Orimo H (2005) In vivo analysis of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20(Suppl 1):S91

    Google Scholar 

  • Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539

    Article  PubMed  CAS  Google Scholar 

  • Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110

    PubMed  CAS  Google Scholar 

  • Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Zhao J, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003a) Recombinant human parathyroid hormone (1–34) (teriparatide) improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Zhao J, Eriksen EF, Genant HK (2003b) Reproducibility of micro CT quantification of 3D microarchitecture of the trabecular and cortical bone in the iliac crest of postmenopausal osteoporotic women and their treatment with teriparatide [rhPTH(1–34)]. RSN 03:571

    Google Scholar 

  • Jiang Y, Zhao JJ, Mangadu R, Medicherla S, Protter AA, Genant HK (2004) Assessment of 3D cortical and trabecular bone microstructure and erosion on micro CT images of a murine model of arthritis. J Bone Miner Res 19:S474

    Google Scholar 

  • Jiang Y, Zhao, P, Liao EY, Dai RU, Wu XP, Genant HK (2005a) Application of micro CT assessment of 3D bone microstructure in preclinical and clinical studies. J Bone Miner Metab 23(Suppl):122–131

    Article  PubMed  Google Scholar 

  • Jiang Y, Zhao J, Geusens P, Liao EY, Adriaensens P, Gelan J, Azria M, Boonen S, Caulin F, Lynch JA, Ouyang X, Genant HK (2005b) Femoral neck trabecular microstructure in ovariectomized ewes treated with calcitonin: MRI microscopic evaluation. J Bone Miner Res 20:125–130

    Article  PubMed  Google Scholar 

  • Kapadia RD, High W, Bertolini D, Sarkar SK (1993) MR microscopy: a novel diagnostic tool in osteoporosis research. In: Christiansen C (ed) Fourth Int Symposium on Osteoporosis and Consensus Development Conference, Hong Kong, p 28

    Google Scholar 

  • Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Melton LJ, Atkinson EJ, Oberg AE, Robb R, Camp J, Riggs BL (2004) Relationship of volumetric density, geometry and bone structure at different skeletal sites to sex steroid levels in men. J Bone Miner Res 19:S88

    Google Scholar 

  • Khosla S, Riggs BL, Oberg AL, Atkinson EJ, McDaniel L, Peterson JM, Melton LJ (2005) Effects of gender and age on bone microstructure at the wrist: a population-based in vivo bone biopsy study. J Bone Miner Res 20(Suppl 1):S20

    Google Scholar 

  • Kinney JH, Lane NE, Haupt DL (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10:264–270

    PubMed  CAS  Google Scholar 

  • Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8:833–842

    Article  PubMed  CAS  Google Scholar 

  • Kühn B, Stampa B, Glüer C-C (1997) Hochauflösende Darstellung und Quantifierung der trabekulären Knochenstruktur der Fingerphalangen mit der Magnetresonanztomographie. Z Med Phys 7:162–168

    Google Scholar 

  • Ladinsky GA, Vasilic B, Popescu AM, Zemel B, Wright AC, Song HK, Saha PK, Peachy H, Snyder PJ, Wehrli FW (2005) MRI based virtual bone biopsy detects large one-year changes in trabecular bone architecture of early postmenopausal women. J Bone Miner Res 20(Suppl 1):S15

    Google Scholar 

  • Lane NE, Thompson JM, Strewler GJ, Kinney JH (1995) Intermittent treatment with human parathyroid hormone (hPTH [1–34]) increased trabecular bone volume but not connectivity in osteopenic rats. J Bone Miner Res 10:1470–1477

    PubMed  CAS  Google Scholar 

  • Lane NE, Balooch M, Zhao J, Jiang Y, Yao W (2004) Glucocorticoids induce changes around the osteocyte lacunae that reduces bone strength and bone mineral content independent of apoptosis: preliminary data from a glucocorticoid-induced bone loss model in male mice. J Bone Miner Res 19:S434–435

    Google Scholar 

  • Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108

    Article  PubMed  CAS  Google Scholar 

  • Lang TF, Li J, Harris ST, Genant HK (1999) Assessment of vertebral bone mineral density using volumetric quantitative computed tomography. J Comput Assist Tomogr 23:130–137

    Article  PubMed  CAS  Google Scholar 

  • Lang TF, Guglielmi G, van Kuijk C, de Serio A, Cammisa M, Genant HK (2002) Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy X-ray absorptiometry in elderly women with and without vertebral fractures. Bone 30:247–250

    Article  PubMed  CAS  Google Scholar 

  • Lang TF, Keyak JH, Yu A, Lu Y, Do L, Li J (2003) Determinants of proximal femoral strength in elderly women. J Bone Miner Res 18:S266

    Google Scholar 

  • Lang TF, LeBlanc A, Evans H, Lu Y (2005) Recovery of proximal femoral density and geometry after long-duration spaceflight. J Bone Miner Res 20(Suppl 1):S44

    Google Scholar 

  • Link T, Majumdar S, Augat P, Lin J, Newitt D, Lang T, Lu Y, Lane N, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporotic patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Vieth V, Stehling C et al. (2003a) High-resolution MRI vs multislice spiral CT: Which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  • Link TM, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003b) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003c) High-resolution MRI vs multislice spiral CT: Which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  • Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14:107–114

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Genant H, Gies A, Guglielmi G (1993) Regional variations in trabecular structure in the calcaneus assessed using high resolution magnetic resonance images and quantitative image analysis. J Bone Miner Res 8S:351

    Google Scholar 

  • Majumdar S, Genant H, Grampp S, Jergas M, Newitt D, Gies A (1994) Analysis of trabecular bone structure in the distal radius using high resolution MRI. Eur Radiol 4:517–524

    Article  Google Scholar 

  • Majumdar S, Newitt DC, Jergas M, Gies AA, Chiu EC, Osman D, Keltner J, Keyak J, Genant HK (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17:417–430

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  PubMed  CAS  Google Scholar 

  • McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA III (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg (Am Vol) 67:1206–1214

    PubMed  CAS  Google Scholar 

  • Muller R, Rüegsegger P (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J Biomech 29:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Muller R, Hahn M, Vogel M, Delling G, Rüegsegger P (1996a) Morphometric analysis of non-invasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18:215–220

    Article  PubMed  CAS  Google Scholar 

  • Muller R, Hildebrand T, Hauselmann HJ, Rüegsegger P (1996b) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Bauss F, Smith SY, Hannan MK (2001) Mechano-structure relationships in normal, ovariectomized and Ibandronate treated aged macaques as assessed by micro-tomographic imaging and biomechanical testing. Trans Orthop Res Soc 26:66

    Google Scholar 

  • Neff M, Dambacher M, Haemmerle S, Rizzoli R, Delmas P, Kissling R (2004) 3D evaluation of bone microarchitecture in humans using high resolution pQCT; a new in vivo, non-invasive and time saving procedure. J Bone Miner Res 19:S236

    Google Scholar 

  • Newitt DC, Majumdar S, van RB, van Rietbergen B, Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

    Article  PubMed  CAS  Google Scholar 

  • Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ouyang X, Selby K, Lang P, Engelke K, Klifa C, Fan B, Zucconi F, Hottya G, Chen M, Majumdar S et al. (1997) High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements. Calcif Tissue Int 60:139–147

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Matthews C, Villanueva A (1983a) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1983b) The stereologic basis of bone histomorphometry: theory of quantitative microscopy and reconstruction of the third dimension. In: Recker R (ed) Bone histomorphometry: techniques and interpretations. CRC Press, Boca Raton, pp 53–87

    Google Scholar 

  • Peyrin F, Salome M, Cloetens P, Ludwig W, Ritman EL, Rüegsegger P, Laval-Jeantet AM, Baruchel J (1998) What do micro CT examinations reveal at various resolutions: a study of the same trabecular bone samples at the 14,7, and 2 micron level. Presented at the Symposium on Bone Architecture and the Competence of Bone, Ittingen, Switzerland, 3–5 July 1998

    Google Scholar 

  • Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848

    Article  PubMed  CAS  Google Scholar 

  • Pothuaud L, Laib A, Levitz P, Benhamou CL, Majumdar S (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. J Bone Miner Res 17:1883–1895

    Article  PubMed  Google Scholar 

  • Recker R, Ensrud K, Diem S, Cheng E, Bare S, Masarachia P, Roschger P, Fratzl P, Klaushofer K, Lombardi A, Kimmel D (2004) Normal bone histomorphometry and 3D microarchitecture after 10 years alendronate treatment of postmenopausal women. J Bone Miner Res 19:S45

    Article  Google Scholar 

  • Rüegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  Google Scholar 

  • Simmons CA, Hipp JA (1997) Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone. J Bone Miner Res 12:942–947

    Article  PubMed  CAS  Google Scholar 

  • Sode M, Keyak J, Bouxsein M, Lang T (2004) Assessment of femoral neck torsional strength indices. Bone Miner Res 19:S238

    Google Scholar 

  • Sohaskey ML, Jiang Y, Zhao J, Mohr A, Roemer F, Genant HK, William C, Skarnes WC (2004) Insertional mutagenesis of osteopotentia, a novel transmembrane protein essential for skeletal integrity. J Bone Miner Res 19:S21

    Google Scholar 

  • Sorocéanu MA, Miao D, Jiang Y, Zhao JJ, Bai XY, Su H, Genant HK, Amizuka N, Goltzman D, Karaplis AC (2004) Pthrp haploinsufficiency impairs bone formation but potentiates the bone anabolic effects of PTH (1–34). J Bone Miner Res 19:S97

    Google Scholar 

  • Stampa B, Kühn B, Heller M, Glüer C-C (1998) Rods or plates: a new algorithm to characterize bone structure using 3D magnetic resonance imaging. Presented at the 13th Int Bone Densitometry Workshop, 4–8 October 1998, Wisconsin

    Google Scholar 

  • Stampa B, Kühn B, Liess C, Heller M, Glüer CC (2002) Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo. Top Magn Reson Imaging 13:357–363

    Article  PubMed  Google Scholar 

  • Takada M, Kikuchi K, Unau S, Murata K (2004) Three-dimensional analysis of trabecular bone structure of human vertebra in vivo using image data from multi-detector row computed tomography: correlation with bone mineral density and ability to discriminate women with vertebral fracture. J Bone Miner Res 19:S371

    Google Scholar 

  • Takeshita S, Namba N, Zhao J, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Med 8:943–949. (Published online on 5 August 2002)

    Article  PubMed  CAS  Google Scholar 

  • Timm W, Graeff C, Vilar J, Nickelsen TN, Nicholson T, Lehmkuhl L, Barkmann R, Glüer CC (2005) In vivo assessment of trabecular bone structure in human vertebrae using high resolution computed tomography. J Bone Miner Res 20(Suppl 1):S336

    Google Scholar 

  • van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28:69–81

    Article  PubMed  Google Scholar 

  • Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357

    PubMed  CAS  Google Scholar 

  • Wehrli FW, Gomberg BR, Saha PK et al. (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  • Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, Wright A, Weening R (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355

    Article  PubMed  Google Scholar 

  • Zmuda JM, Chan BKS, Marshall LM, Cauley JA, Lang TF, Ensrud KE, Lewis CE, Stefanick ML, Barrett-Conner E, Orwoll ES (2005) Ethnic diversity in volumetric bone density and geometry in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 20(Suppl 1):S35

    Google Scholar 

  • Zouch M, Gerbay B, Thomas T, Vico L, Alexandre C (2005) Patients with hip fracture exhibit bone microarchitectural deterioration compared to patients with Colle’s fracture as assessed with in vivo high resolution 3D micro-pQCT. European Advanced Detection of Bone Quality(ADOQ) Study. J Bone Miner Res 20(Suppl 1):S45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry K. Genant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Genant, H.K., Jiang, YB. (2007). Perspectives on Advances in Bone Imaging for Osteoporosis. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics