Skip to main content

Inhibition of the TGF-β Signaling Pathway in Tumor Cells

  • Chapter
Targeted Interference with Signal Transduction Events

Part of the book series: Resent Results in Cancer Research ((RECENTCANCER,volume 172))

Abstract

Transforming growth factor—β (TGF—β) plays an important physiologic role in the regulation of cell proliferation, motility, and apoptosis as well as extracellular matrix (ECM) production. It therefore modulates physiologic functions such as embryonic development, wound healing, vasculogenesis and angiogenesis, as well as immune surveillance. Moreover, TGF—β has been associated with a wide variety of diseases: atherosclerosis; fibrotic diseases of the lung, kidney, and liver; Alzheimer disease; developmental defects; hereditary hemorrhagic teleangiectasia; as well as both solid tumors and hematologic malignancies. Importantly, TGF—β signaling pathways mediate both early-stage tumor- suppressing, as well as late-stage tumor-promoting, effects. In addition, TGF—β can synergize with oncogenes in transformation and tumor progression. Recent therapeutic approaches in cancer target TGF—β signaling, either alone or in combination with conventional or novel targeted therapy, to improve patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adnane J et al. (2000) Inhibition of farnesyltransferase increases TGFbeta type II receptor expression and enhances the responsiveness of human cancer cells to TGFbeta. Oncogene 19:5525–5533

    Article  PubMed  CAS  Google Scholar 

  • Alexandrow MG et al. (1995) Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc Natl Acad Sci USA 92:3239–3243

    Article  PubMed  CAS  Google Scholar 

  • Ananth S et al. (1999) Transforming growth factor beta1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 59:2210–2216

    PubMed  CAS  Google Scholar 

  • Anscher MS et al. (1993) Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 328:1592–1598

    Article  PubMed  CAS  Google Scholar 

  • Anscher MS et al. (2003) Risk of long-term complications after TFG-beta1-guided very-high-dose thoracic radiotherapy. Int J Radiat Oncol Biol Phys 56:988–995

    Article  PubMed  Google Scholar 

  • Arteaga CL et al. (1993a) Evidence for a positive role of transforming growth factor-beta in human breast cancer cell tumorigenesis. J Cell Biochem Suppl 17G:187–193

    Article  PubMed  CAS  Google Scholar 

  • Arteaga CL et al. (1993b) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92:2569–2576

    PubMed  CAS  Google Scholar 

  • Arteaga CL (2006) Inhibition of TGFbeta signaling in cancer therapy. Curr Opin Genet Dev 16:30–37

    Article  PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2000) Smads as transcriptional comodulators. Curr Opin Cell Biol 12:235–243

    Article  PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    Article  PubMed  CAS  Google Scholar 

  • Bae SC, Choi JK (2004) Tumor suppressor activity of RUNX3. Oncogene 23:4336–4340

    Article  PubMed  CAS  Google Scholar 

  • Bakin AV et al. (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay A et al. (1999) A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 59:5041–5046

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay A et al. (2002) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 62:4690–4695

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay A et al. (2005) Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 63:81–90

    Article  PubMed  CAS  Google Scholar 

  • Bayes M et al. (2003) Gateways to clinical trials. Methods Find Exp Clin Pharmacol 25:317–340

    PubMed  CAS  Google Scholar 

  • Bayes M et al. (2004) Gateways to clinical trials. Methods Find Exp Clin Pharmacol 26:587–612

    PubMed  CAS  Google Scholar 

  • Benigni A et al. (2003) Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 14:1816–1824

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA et al. (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  • Bian Y et al. (2005) TGFBR1*6A may contribute to hereditary colorectal cancer. J Clin Oncol 23:3074–3078

    Article  PubMed  CAS  Google Scholar 

  • Bottinger EP et al. (1997) Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 57:5564–5570

    PubMed  CAS  Google Scholar 

  • Boyer Arnold N, Korc M (2005) Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem 280:21858–21866

    Article  PubMed  CAS  Google Scholar 

  • Brown RD et al. (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998

    Article  PubMed  CAS  Google Scholar 

  • Burrows FJ et al. (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634

    PubMed  CAS  Google Scholar 

  • Byfield SD et al. (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    Article  CAS  Google Scholar 

  • Castilla A et al. (1991) Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 324:933–940

    Article  PubMed  CAS  Google Scholar 

  • Chang J et al. (1997) Expression of transforming growth factor beta type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res 57:2856–2859

    PubMed  CAS  Google Scholar 

  • Chen CR et al. (2002) E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110:19–32

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ et al. (1998) Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282:1714–1717

    Article  PubMed  CAS  Google Scholar 

  • Chen T et al. (1998) Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58:4805–4810

    PubMed  CAS  Google Scholar 

  • Chen X et al. (1996) A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383:691–696

    Article  PubMed  CAS  Google Scholar 

  • Chen YR et al. (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271:31929–31936

    Article  PubMed  CAS  Google Scholar 

  • Coffey RJ, Jr. et al. (1988) Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol 8:3088–3093

    PubMed  CAS  Google Scholar 

  • Comerci JT, Jr. et al. (1997) Induction of transforming growth factor beta-1 in cervical intraepithelial neoplasia in vivo after treatment with beta-carotene. Clin Cancer Res 3:157–160

    PubMed  CAS  Google Scholar 

  • Comijn J et al. (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro MF (2003) Technology evaluation:lerdelimumab, Cambridge Antibody Technology. Curr Opin Mol Ther 5:199–203

    PubMed  CAS  Google Scholar 

  • Crawford SE et al. (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Cui W et al. (1996) TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    Article  PubMed  CAS  Google Scholar 

  • Datto MB et al. (1995) Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  PubMed  CAS  Google Scholar 

  • Datto MB et al. (1997) The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol 17:2030–2037

    PubMed  CAS  Google Scholar 

  • de Jong JS et al. (1998) Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II:Correlations with proliferation and angiogenesis. J Pathol 184:53–57

    Article  PubMed  Google Scholar 

  • de Larco JE, Todaro GJ (1978) Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75:4001–4005

    Article  PubMed  Google Scholar 

  • de Martin R et al. (1987) Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J 6:3673–3677

    PubMed  Google Scholar 

  • DeCoteau JF et al. (1997) Loss of functional cell surface transforming growth factor beta (TGF-beta) type 1 receptor correlates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 94:5877–5881

    Article  PubMed  CAS  Google Scholar 

  • Derynck R et al. (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705

    Article  PubMed  CAS  Google Scholar 

  • Derynck R et al. (1988) A new type of transforming growth factor-beta, TGF-beta 3. EMBO J 7:3737–3743

    PubMed  CAS  Google Scholar 

  • Derynck R, Zhang Y (1996) Intracellular signalling:the mad way to do it. Curr Biol 6:1226–1229

    Article  PubMed  CAS  Google Scholar 

  • Derynck R et al. (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  PubMed  CAS  Google Scholar 

  • Di Guglielmo GM et al. (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  CAS  Google Scholar 

  • Dickson MC et al. (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  • Dorigo O et al. (1998) Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 71:204–210

    Article  PubMed  CAS  Google Scholar 

  • Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3:531–536

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa T et al. (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480

    Article  PubMed  CAS  Google Scholar 

  • Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23:2078–2093

    Article  PubMed  CAS  Google Scholar 

  • Engel ME et al. (1999) Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274:37413–37420

    Article  PubMed  CAS  Google Scholar 

  • Enholm B et al. (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14:2475–2483

    Article  PubMed  CAS  Google Scholar 

  • Eppert K et al. (1996) MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552

    Article  PubMed  CAS  Google Scholar 

  • Ewen ME et al. (1995) p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. Genes Dev 9:204–217

    Article  PubMed  CAS  Google Scholar 

  • Fakhrai H et al. (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 93:2909–2914

    Article  PubMed  CAS  Google Scholar 

  • Fortunel NO et al. (2000) Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood 96:2022–2036

    PubMed  CAS  Google Scholar 

  • Frolik CA et al. (1983) Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA 80:3676–3680

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi M et al. (2001) Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 12:1431–1443

    PubMed  CAS  Google Scholar 

  • Ge R et al. (2004) Selective inhibitors of type I receptor kinase block cellular transforming growth factor-beta signaling. Biochem Pharmacol 68:41–50

    Article  PubMed  CAS  Google Scholar 

  • Geiser AG et al. (1993) Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse:aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci USA 90:9944–9948

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F et al. (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162:4567–4575

    PubMed  CAS  Google Scholar 

  • George J et al. (1999) In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor:a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 96:12719–12724

    Article  PubMed  CAS  Google Scholar 

  • Goggins M et al. (1998) Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58:5329–5332

    PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181

    Article  PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    Article  PubMed  CAS  Google Scholar 

  • Gorelik L et al. (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2002) Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2:46–53

    Article  PubMed  CAS  Google Scholar 

  • Goumans MJ et al. (1999) Transforming growth factor-beta signalling in extraembryonic mesoderm is required for yolk sac vasculogenesis in mice. Development 126:3473–3483

    PubMed  CAS  Google Scholar 

  • Grady WM et al. (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    PubMed  CAS  Google Scholar 

  • Grainger DJ et al. (1995) Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta. Nat Med 1:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Grainger DJ, Metcalfe JC (1996) Tamoxifen:teaching an old drug new tricks? Nat Med 2:381–385

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn HG et al. (2001) Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas (Review). Int J Oncol 18:669–681

    PubMed  CAS  Google Scholar 

  • Hahn SA et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC (2003) Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 21:2034–2043

    Article  PubMed  CAS  Google Scholar 

  • Hajra KM et al. (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  • Halder SK et al. (2005) A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 7:509–521

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T et al. (2002) Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 62:5955–5961

    PubMed  CAS  Google Scholar 

  • Hanafusa H et al. (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161–27167

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa Y et al. (2001) Transforming growth factorbeta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91:964–971

    Article  PubMed  CAS  Google Scholar 

  • Hata A et al. (2000) OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100:229–240

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T et al. (2004) Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 10:7540–7546

    Article  PubMed  CAS  Google Scholar 

  • Hayes S et al. (2002) TGF beta receptor internalization into EEA1-enriched early endosomes:role in signaling to Smad2. J Cell Biol 158:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Hjelmeland MD et al. (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    PubMed  CAS  Google Scholar 

  • Hocevar BA et al. (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18:1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Hocevar BA et al. (2001) The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J 20:2789–2801

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG et al. (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63:8271–8277

    PubMed  CAS  Google Scholar 

  • Howe JR et al. (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088

    Article  PubMed  CAS  Google Scholar 

  • Imai Y et al. (2001) Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene 20:88–96

    Article  PubMed  CAS  Google Scholar 

  • Imamura T et al. (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622–626

    Article  PubMed  CAS  Google Scholar 

  • Inman GJ et al. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  PubMed  CAS  Google Scholar 

  • Itoh S et al. (2003) Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem 278:3751–3761

    Article  PubMed  CAS  Google Scholar 

  • Izumoto S et al. (1997) Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 112:251–256

    Article  PubMed  CAS  Google Scholar 

  • Izzi L, Attisano L (2004) Regulation of the TGFbeta signaling pathway by ubiquitin-mediated degradation. Oncogene 23:2071–2078

    Article  PubMed  CAS  Google Scholar 

  • Jakubowiak A et al. (2000) Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 275:40282–40287

    Article  PubMed  CAS  Google Scholar 

  • James D et al. (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Janda E et al. (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313

    Article  PubMed  CAS  Google Scholar 

  • Jiang X et al. (1995) Increased intraplatelet and urinary transforming growth factor-beta in patients with multiple myeloma. Acta Haematol 94:1–6

    PubMed  CAS  Google Scholar 

  • Johansson N et al. (2000) Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113 Pt 2:227–235

    PubMed  CAS  Google Scholar 

  • Johnson DW et al. (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kaji H et al. (2001) Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 98:3837–3842

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto T et al. (2002) Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells:Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. EMBO J 21:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Kang Y et al. (2003a) A self-enabling TGFbeta response coupled to stress signaling:Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926

    Article  PubMed  CAS  Google Scholar 

  • Kang Y et al. (2003b) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  • Katakura Y et al. (1999) Transforming growth factor beta triggers two independent-senescence programs in cancer cells. Biochem Biophys Res Commun 255:110–115

    Article  PubMed  CAS  Google Scholar 

  • Kavsak P et al. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Kim WS et al. (1999) Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 19:301–306

    PubMed  CAS  Google Scholar 

  • Kirsch T et al. (2000) BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J 19:3314–3324

    Article  PubMed  CAS  Google Scholar 

  • Kleeff J et al. (1999) The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18:5363–5372

    Article  PubMed  CAS  Google Scholar 

  • Kleeff J et al. (2000) Pancreatic cancer-new aspects of molecular biology research. Swiss Surg 6:231–234

    Article  PubMed  CAS  Google Scholar 

  • Knaus PI et al. (1996) A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 16:3480–3489

    PubMed  CAS  Google Scholar 

  • Kretzschmar M et al. (1999) A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev 13:804–816

    PubMed  CAS  Google Scholar 

  • Kurokawa M et al. (1998) The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394:92–96

    Article  PubMed  CAS  Google Scholar 

  • Kyrtsonis MC et al. (1998) Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol 15:124–128

    PubMed  CAS  Google Scholar 

  • Laping NJ et al. (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity:SB-431542. Mol Pharmacol 62:58–64

    Article  PubMed  CAS  Google Scholar 

  • Larsson J et al. (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20:1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Lavoie P et al. (2005) Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats. J Hypertens 23:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Le Bousse-Kerdiles MC et al. (1996) Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood 88:4534–4546

    PubMed  Google Scholar 

  • Le Roy C, Wrana JL (2005a) Signaling and endocytosis:a team effort for cell migration. Dev Cell 9:167–168

    Article  PubMed  CAS  Google Scholar 

  • Le Roy C, Wrana JL (2005b) Clathrin-and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  CAS  Google Scholar 

  • Leivonen SK et al. (2006) Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene

    Google Scholar 

  • Li C et al. (1999) TGF-beta1 levels in pre-treatment plasma identify breast cancer patients at risk of developing post-radiotherapy fibrosis. Int J Cancer 84:155–159

    Article  PubMed  CAS  Google Scholar 

  • Li QL et al. (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124

    Article  PubMed  CAS  Google Scholar 

  • Liau LM et al. (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20:742–747

    PubMed  CAS  Google Scholar 

  • Lin HK et al. (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431:205–211

    Article  PubMed  CAS  Google Scholar 

  • Lo RS et al. (2001) Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 20:128–136

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Casillas F et al. (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Lowsky R et al. (2000) MSH2-deficient murine lymphomas harbor insertion/deletion mutations in the transforming growth factor beta receptor type 2 gene and display low not high frequency microsatellite instability. Blood 95:1767–1772

    PubMed  CAS  Google Scholar 

  • Lu SL et al. (1996) Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res 56:4595–4598

    PubMed  CAS  Google Scholar 

  • Madisen L et al. (1988) Transforming growth factor-beta 2:cDNA cloning and sequence analysis. DNA 7:1–8

    Article  PubMed  CAS  Google Scholar 

  • Madisen L et al. (1989) Expression and characterization of recombinant TGF-beta 2 proteins produced in mammalian cells. DNA 8:205–212

    PubMed  CAS  Google Scholar 

  • Maeda S et al. (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563

    Article  PubMed  CAS  Google Scholar 

  • Maggard M et al. (2001) Antisense TGF-beta2 immunotherapy for hepatocellular carcinoma:treatment in a rat tumor model. Ann Surg Oncol 8:32–37

    PubMed  CAS  Google Scholar 

  • Markowitz S et al. (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  PubMed  CAS  Google Scholar 

  • Martin JS et al. (1995) Analysis of homozygous TGF beta 1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis. Ann NY Acad Sci 752:300–308

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  CAS  Google Scholar 

  • Massague J et al. (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Matsuno F et al. (1999) Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new antiendoglin monoclonal antibodies. Clin Cancer Res 5:371–382

    PubMed  CAS  Google Scholar 

  • Matsuyama S et al. (2003) SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Res 63:7791–7798

    PubMed  CAS  Google Scholar 

  • McAllister KA et al. (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  PubMed  CAS  Google Scholar 

  • McDonald CC et al. (1995) Cardiac and vascular morbidity in women receiving adjuvant tamoxifen for breast cancer in a randomised trial. The Scottish Cancer Trials Breast Group. BMJ 311:977–980

    PubMed  CAS  Google Scholar 

  • Mead AL et al. (2003) Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 44:3394–3401

    Article  PubMed  Google Scholar 

  • Miettinen PJ et al. (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells:involvement of type I receptors. J Cell Biol 127:2021–2036

    Article  PubMed  CAS  Google Scholar 

  • Mimura K et al. (2005) Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin Cancer Res 11:4898–4904

    Article  PubMed  CAS  Google Scholar 

  • Mitani K (2004) Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 23:4263–4269

    Article  PubMed  CAS  Google Scholar 

  • Miura S et al. (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20:9346–9355

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A et al. (2001) Captopril restores transforming growth factor-beta type II receptor and sensitivity to transforming growth factor-beta in murine renal cell cancer cells. J Urol 165:616–620

    Article  PubMed  CAS  Google Scholar 

  • Miyaki M et al. (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18:3098–3103

    Article  PubMed  CAS  Google Scholar 

  • Moses HL et al. (1981) Transforming growth factor production by chemically transformed cells. Cancer Res 41:2842–2848

    PubMed  CAS  Google Scholar 

  • Moustakas A et al. (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369

    PubMed  CAS  Google Scholar 

  • Muraoka RS et al. (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Mustafa M et al. (1993) The major histocompatibility complex influences myelin basic protein 63-88-induced T cell cytokine profile and experimental autoimmune encephalomyelitis. Eur J Immunol 23:3089–3095

    Article  PubMed  CAS  Google Scholar 

  • Myeroff LL et al. (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 55:5545–5547

    PubMed  CAS  Google Scholar 

  • Nicolas FJ, Hill CS (2003) Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene 22:3698–3711

    Article  PubMed  CAS  Google Scholar 

  • Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 (Pt 22):3897–3905

    PubMed  CAS  Google Scholar 

  • Oft M et al. (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477

    Article  PubMed  CAS  Google Scholar 

  • Oft M et al. (1998) TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Oft M et al. (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4:487–494

    Article  PubMed  CAS  Google Scholar 

  • Oshima M et al. (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    Article  PubMed  CAS  Google Scholar 

  • Otsuki T et al. (2001) Expression and in vitro modification of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP-receptor in human myeloma cells. Leuk Lymphoma 41:397–409

    PubMed  CAS  Google Scholar 

  • Park BJ et al. (2000) Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res 60:3031–3038

    PubMed  CAS  Google Scholar 

  • Park SH et al. (2002) Transcriptional regulation of the transforming growth factor beta type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells. J Biol Chem 277:5168–5174

    Article  PubMed  CAS  Google Scholar 

  • Parsons R et al. (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550

    PubMed  CAS  Google Scholar 

  • Pasche B et al. (1999) TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res 59:5678–5682

    PubMed  CAS  Google Scholar 

  • Pasche B et al. (2004) TGFBR1*6A and cancer:a metaanalysis of 12 case-control studies. J Clin Oncol 22:756–758

    Article  PubMed  Google Scholar 

  • Pasche B et al. (2005) Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA 294:1634–1646

    Article  PubMed  CAS  Google Scholar 

  • Peinado H et al. (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines:mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123

    Article  PubMed  CAS  Google Scholar 

  • Peinado H et al. (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319

    Article  PubMed  CAS  Google Scholar 

  • Peng SB et al. (2005) Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44:2293–2304

    Article  PubMed  CAS  Google Scholar 

  • Penheiter SG et al. (2002) Internalization-dependent and-independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22:4750–4759

    Article  PubMed  CAS  Google Scholar 

  • Perlman R et al. (2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708–714

    Article  PubMed  CAS  Google Scholar 

  • Pertovaara L et al. (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274

    PubMed  CAS  Google Scholar 

  • Petritsch C et al. (2000) TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 14:3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Pierce DF, Jr. et al. (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92:4254–4258

    Article  PubMed  CAS  Google Scholar 

  • Polyak K et al. (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Portier M et al. (1993) Cytokine gene expression in human multiple myeloma. Br J Haematol 85:514–520

    Article  PubMed  CAS  Google Scholar 

  • Reimold AM et al. (1993) Transforming growth factor beta 1 repression of the HLA-DR alpha gene is mediated by conserved proximal promoter elements. J Immunol 151:4173–4182

    PubMed  CAS  Google Scholar 

  • Roberts AB et al. (1980) Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci USA 77:3494–3498

    Article  PubMed  CAS  Google Scholar 

  • Saha D et al. (2001) Oncogenic ras represses transforming growth factor-beta /Smad signaling by degrading tumor suppressor Smad4. J Biol Chem 276:29531–29537

    Article  PubMed  CAS  Google Scholar 

  • Saito H et al. (2000) An elevated serum level of transforming growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res 20:4489–4493

    PubMed  CAS  Google Scholar 

  • Sano Y et al. (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 274:8949–8957

    Article  PubMed  CAS  Google Scholar 

  • Savagner P et al. (1997) The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137:1403–1419

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JS et al. (2004) Synthesis and activity of new aryl-and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 14:3581–3584

    Article  PubMed  CAS  Google Scholar 

  • Schiemann WP et al. (1999) A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. Blood 94:2854–2861

    PubMed  CAS  Google Scholar 

  • Schlingensiepen KH et al. (2006) Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    Article  PubMed  CAS  Google Scholar 

  • Seoane J et al. (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    Article  PubMed  CAS  Google Scholar 

  • Shariat SF et al. (2001a) Preoperative plasma levels of transforming growth factor beta(1) strongly predict clinical outcome in patients with bladder carcinoma. Cancer 92:2985–2992

    Article  PubMed  CAS  Google Scholar 

  • Shariat SF et al. (2001b) Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 19:2856–2864

    PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Shimo T et al. (2001) Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology 61:315–322

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM et al. (2003a) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM et al. (2003b) Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-beta-mediated epithelial cell growth suppression. J Biol Chem 278:35444–35450

    Article  PubMed  CAS  Google Scholar 

  • Sinha S et al. (1998) Cellular and extracellular biology of the latent transforming growth factor-beta binding proteins. Matrix Biol 17:529–545

    Article  PubMed  CAS  Google Scholar 

  • Siriwardena D et al. (2002) Human antitransforming growth factor beta(2) monoclonal antibody-a new modulator of wound healing in trabeculectomy:a randomized placebo controlled clinical study. Ophthalmology 109:427–431

    Article  PubMed  Google Scholar 

  • Sporn MB (1996) The war on cancer. Lancet 347:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Stearns ME et al. (1999) Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res 5:711–720

    PubMed  CAS  Google Scholar 

  • Stroschein SL et al. (1999) Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286:771–774

    Article  PubMed  CAS  Google Scholar 

  • Subramanian G et al. (2004) Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 64:5200–5211

    Article  PubMed  CAS  Google Scholar 

  • Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  PubMed  CAS  Google Scholar 

  • Sun Y et al. (1999) Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 4:499–509

    Article  PubMed  CAS  Google Scholar 

  • Takaku K et al. (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656

    Article  PubMed  CAS  Google Scholar 

  • Tang B et al. (2003) TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • ten Dijke P et al. (1988a) Transforming growth factor type beta 3 maps to human chromosome 14, region q23—q24. Oncogene 3:721–724

    PubMed  Google Scholar 

  • ten Dijke P et al. (1988b) Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci USA 85:4715–4719

    Article  PubMed  Google Scholar 

  • Ten Dijke P et al. (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Tojo M et al. (2005) The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci 96:791–800

    Article  PubMed  CAS  Google Scholar 

  • Torre-Amione G et al. (1990) A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 87:1486–1490

    Article  PubMed  CAS  Google Scholar 

  • Tsai JF et al. (1997a) Urinary transforming growth factor-beta 1 in relation to serum alpha-fetoprotein in hepatocellular carcinoma. Scand J Gastroenterol 32:254–260

    PubMed  CAS  Google Scholar 

  • Tsai JF et al. (1997b) Elevated urinary transforming growth factor-beta1 level as a tumour marker and predictor of poor survival in cirrhotic hepatocellular carcinoma. Br J Cancer 76:244–250

    PubMed  CAS  Google Scholar 

  • Tsai JF et al. (1997c) Clinical evaluation of urinary transforming growth factor-beta1 and serum alpha-fetoprotein as tumour markers of hepatocellular carcinoma. Br J Cancer 75:1460–1466

    PubMed  CAS  Google Scholar 

  • Tsukazaki T et al. (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791

    Article  PubMed  CAS  Google Scholar 

  • Tsushima H et al. (2001) Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    PubMed  CAS  Google Scholar 

  • Tuxhorn JA et al. (2002) Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62:6021–6025

    PubMed  CAS  Google Scholar 

  • Tzai TS et al. (1998) Antisense oligonucleotide specific for transforming growth factor-beta 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer. Anticancer Res 18:1585–1589

    PubMed  CAS  Google Scholar 

  • Tzai TS et al. (2000) Immunization with TGF-beta antisense oligonucleotide-modified autologous tumor vaccine enhances the antitumor immunity of MBT-2 tumor-bearing mice through upregulation of MHC class I and Fas expressions. Anticancer Res 20:1557–1562

    PubMed  CAS  Google Scholar 

  • Uchida K et al. (1996) Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res 56:5583–5585

    PubMed  CAS  Google Scholar 

  • Uhl M et al. (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    Article  PubMed  CAS  Google Scholar 

  • Urashima M et al. (1996) Transforming growth factorbeta1: differential effects on multiple myeloma versus normal B cells. Blood 87:1928–1938

    PubMed  CAS  Google Scholar 

  • Vardouli L et al. (2005) LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem 280:11448–11457

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubbarao K et al. (2001) Reversion of transcriptional repression of Sp1 by 5 aza-2’ deoxycytidine restores TGF-beta type II receptor expression in the pancreatic cancer cell line MIA PaCa-2. Cancer Res 61:6239–6247

    PubMed  CAS  Google Scholar 

  • Verdaguer J et al. (1999) Two mechanisms for the non-MHC-linked resistance to spontaneous autoimmunity. J Immunol 162:4614–4626

    PubMed  CAS  Google Scholar 

  • Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29

    Article  PubMed  CAS  Google Scholar 

  • Wallick SC et al. (1990) Immunoregulatory role of transforming growth factor beta (TGF-beta) in development of killer cells:comparison of active and latent TGF-beta 1. J Exp Med 172:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Wan M et al. (2002) Jab1 antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep 3:171–176

    Article  PubMed  CAS  Google Scholar 

  • Wang D et al. (1999) Mutation analysis of the Smad3 gene in human ovarian cancers. Int J Oncol 15:949–953

    PubMed  Google Scholar 

  • Wang D et al. (2000) Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res 60:4507–4512

    PubMed  CAS  Google Scholar 

  • Wang J et al. (1995) Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem 270:22044–22049

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T et al. (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Webb NR et al. (1988) Structural and sequence analysis of TGF-beta 2 cDNA clones predicts two different precursor proteins produced by alternative mRNA splicing. DNA 7:493–497

    PubMed  CAS  Google Scholar 

  • Whitman M (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev 12:2445–2462

    PubMed  CAS  Google Scholar 

  • Wojtowicz-Praga S et al. (1996) Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 19:169–175

    PubMed  CAS  Google Scholar 

  • Wolfraim LA et al. (2004) Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 351:552–559

    Article  PubMed  CAS  Google Scholar 

  • Wong C et al. (1999) Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 19:1821–1830

    PubMed  CAS  Google Scholar 

  • Wormstone IM et al. (2002) TGF-beta2-induced matrix modification and cell transdifferentiation in the human lens capsular bag. Invest Ophthalmol Vis Sci 43:2301–2308

    PubMed  Google Scholar 

  • Wrana JL, Attisano L (2000) The Smad pathway. Cytokine Growth Factor Rev 11:5–13

    Article  PubMed  CAS  Google Scholar 

  • Xu L et al. (2000) The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol 2:559–562

    Article  PubMed  CAS  Google Scholar 

  • Xu L et al. (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene

    Google Scholar 

  • Xu X et al. (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19:1868–1874

    Article  PubMed  CAS  Google Scholar 

  • Yakymovych I et al. (2001) Regulation of Smad signaling by protein kinase C. FASEB J 15:553–555

    PubMed  CAS  Google Scholar 

  • Yamaguchi K et al. (1995) Identification of a member of the MAPKKK family as a potential mediator of TGFbeta signal transduction. Science 270:2008–2011

    Article  PubMed  CAS  Google Scholar 

  • Yang YA et al. (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    Article  PubMed  CAS  Google Scholar 

  • Yin JJ et al. (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed  CAS  Google Scholar 

  • Yingling JM et al. (2004) Development of TGF-beta signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Yu L et al. (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21:3749–3759

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y et al. (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y et al. (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714

    Article  PubMed  CAS  Google Scholar 

  • Ziesche R et al. (1999) A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 341:1264–1269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Podar, K., Raje, N., Anderson, K.C. (2007). Inhibition of the TGF-β Signaling Pathway in Tumor Cells. In: Groner, B. (eds) Targeted Interference with Signal Transduction Events. Resent Results in Cancer Research, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31209-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31209-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31208-6

  • Online ISBN: 978-3-540-31209-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics