Skip to main content

Color Vision in Clinical Practice

  • Chapter
  • First Online:
Human Color Vision

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

Abstract

The principal aim of this chapter is to introduce the reader to clinical applications of color assessment and to describe how knowledge of color vision loss is used in clinical practice. The chapter starts with an overview of important aspects of normal, trichromatic color vision. Congenital deficiencies are then reviewed briefly and the factors that cause the large variability in congenital deficiency are discussed. This is then followed by a detailed classification of the retinal, optic nerve and systemic diseases that can cause loss of color vision. The principal color vision tests that are used routinely in clinical practice are then introduced. Emphasis is placed on detection of small changes in color vision that can precede the earliest, clinical signs of a disease, the classification of the patient’s class of color vision (i.e., normal trichromacy, deutan, protan, tritan, or acquired deficiency) and the test’s ability to quantify the severity of color vision loss. Important diseases of the eye and the visual system are reviewed and the associated loss of red/green and yellow/blue chromatic sensitivity discussed and illustrated with emphasis on new findings and future developments. Finally, a typical approach for the use of color vision tests in clinical practice is explained with case reports that illustrate key findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacobs GH. The discovery of spectral opponency in visual systems and its impact on understanding the neurobiology of color vision. J Hist Neurosci. 2014;23:287–314.

    Article  PubMed  Google Scholar 

  2. Hurvich LM, Jameson D. An opponent-process theory of color vision. Psychol Rev. 1957;64(Part 1):384–404.

    Article  PubMed  Google Scholar 

  3. Rodriguez-Carmona M, O’Neill-Biba M, Barbur JL. Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviat Space Environ Med. 2012;83:19–29.

    Article  PubMed  Google Scholar 

  4. Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Percept Sci. 2015;5:1594.

    Google Scholar 

  5. Walkey HC, Barbur JL, Harlow JA, Makous W. Measurements of chromatic sensitivity in the mesopic range. Color Res Appl. 2001;26:S36–42.

    Article  Google Scholar 

  6. Terasaki H, Miyake Y, Nomura R, Horiguchi M, Suzuki S, Kondo M. Blue-on-yellow perimetry in the complete type of congenital stationary night blindness. Invest Ophthalmol Vis Sci. 1999;40:2761–4.

    CAS  PubMed  Google Scholar 

  7. Schmidt BP, Neitz M, Neitz J. Neurobiological hypothesis of color appearance and hue perception. J Opt Soc Am A Opt Image Sci Vis. 2014;31:A195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47 Suppl 2:253–62.

    Article  Google Scholar 

  9. Squire TJ, Rodriguez-Carmona M, Evans ADB, Barbur JL. Color vision tests for aviation: comparison of the anomaloscope and three lantern types. Aviat Space Environ Med. 2005;76:421–9.

    PubMed  Google Scholar 

  10. Ballard J. Colour-vision safety on track. Occup Health Work. 2013;10:20–3.

    Google Scholar 

  11. Barbur JL, Rodriguez-Carmona ML. Variability in normal and defective colour vision: consequences for occupational environments. In: Best J, editor. Colour des. Cambridge: Woodhead; 2012. p. 24–82.

    Google Scholar 

  12. Hardy LH, Rand G, Rittler MC. A screening test for defective red-green vision; test based on eighteen pseudoisochromatic plates from the American Optical Company’s compilation. Arch Ophthalmol (Chic Ill 1929). 1947;38:442–9.

    Article  CAS  Google Scholar 

  13. Cole BL, Lian K-Y, Lakkis C. The new Richmond HRR pseudoisochromatic test for colour vision is better than the Ishihara test. Clin Exp Optom. 2006;89:73–80.

    Article  PubMed  Google Scholar 

  14. Cole BL. Assessment of inherited colour vision defects in clinical practice. Clin Exp Optom. 2007;90:157–75.

    Article  PubMed  Google Scholar 

  15. Pokorny J, Smith VC. Effect of field size on red–green color mixture equations. J Opt Soc Am. 1976;66:705–8.

    Article  CAS  PubMed  Google Scholar 

  16. Barbur JL, Rodriguez-Carmona M, Harlow JA, Mancuso K, Neitz J, Neitz M. A study of unusual Rayleigh matches in deutan deficiency. Vis Neurosci. 2008;25:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moreland JD, Kerr J. Optimization of stimuli for trit-anomaloscopy. Mod Probl Ophthalmol. 1978;19:162–6.

    CAS  PubMed  Google Scholar 

  18. Moreland JD, Kerr J. Optimization of a Rayleigh-type equation for the detection of tritanomaly. Vision Res. 1979;19:1369–75.

    Article  CAS  PubMed  Google Scholar 

  19. Parry NRA. Color vision deficiencies. In: Elliot AJ, Fairchild MD, Franklin A, editors. Handbook of color psychology. Cambridge: Cambridge University Press; 2015. p. 216–42.

    Chapter  Google Scholar 

  20. Rabin J, Gooch J, Ivan D. Rapid quantification of color vision: the cone contrast test. Invest Ophthalmol Vis Sci. 2011;52:816–20.

    Article  PubMed  Google Scholar 

  21. Rabin J. Cone-specific measures of human color vision. Invest Ophthalmol Vis Sci. 1996;37:2771–4.

    CAS  PubMed  Google Scholar 

  22. Rabin J. Quantification of color vision with cone contrast sensitivity. Vis Neurosci. 2004;21:483–5.

    Article  PubMed  Google Scholar 

  23. Regan BC, Reffin JP, Mollon JD. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Res. 1994;34:1279–99.

    Article  CAS  PubMed  Google Scholar 

  24. Paramei GV. Color discrimination across four life decades assessed by the Cambridge Colour Test. J Opt Soc Am A Opt Image Sci Vis. 2012;29:A290–7.

    Article  PubMed  Google Scholar 

  25. Barbur JL, Rodriguez-Carmona ML. Color vision changes in normal aging. In: Elliot AJ, Fairchild MD, Franklin A, editors. Handbook of color psychology. Cambridge: Cambridge University Press; 2015. p. 180–96.

    Chapter  Google Scholar 

  26. Barbur JL. “Double-blindsight” revealed through the processing of color and luminance contrast defined motion signals. Prog Brain Res. 2004;144:243–59.

    Article  PubMed  Google Scholar 

  27. Barbur JL, Moro S, Harlow JA, Lam BL, Liu M. Comparison of pupil responses to luminance and colour in severe optic neuritis. Clin Neurophysiol. 2004;115:2650–8.

    Article  CAS  PubMed  Google Scholar 

  28. Moro SI, Rodriguez-Carmona ML, Frost EC, Plant GT, Barbur JL. Recovery of vision and pupil responses in optic neuritis and multiple sclerosis. Ophthalmic Physiol Opt. 2007;27:451–60.

    Article  CAS  PubMed  Google Scholar 

  29. Verriest G. Further studies on acquired deficiency of color discrimination. JOSA. 1963;53:185–97.

    Article  CAS  Google Scholar 

  30. Pokorny J, Smith VC, Verriest G, Pinckers A. Congenital and acquired color vision defects. New York: Grune & Stratton; 1979.

    Google Scholar 

  31. Rauscher FG, Chisholm CM, Edgar DF, Barbur JL. Assessment of novel binocular colour, motion and contrast tests in glaucoma. Cell Tissue Res. 2013;353:297–310.

    Article  PubMed  Google Scholar 

  32. Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res. 2014;42:1–26.

    Article  CAS  PubMed  Google Scholar 

  33. Kocur I, Resnikoff S. Visual impairment and blindness in Europe and their prevention. Br J Ophthalmol. 2002;86:716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lois N, Holder GE, Fitzke FW, Plant C, Bird AC. Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus. Invest Ophthalmol Vis Sci. 1999;40:2668–75.

    CAS  PubMed  Google Scholar 

  35. McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161:241–54.

    Article  CAS  PubMed  Google Scholar 

  36. Carroll J, Dubra A, Gardner JC, Mizrahi-Meissonnier L, Cooper RF, Dubis AM, et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Invest Ophthalmol Vis Sci. 2012;53:8006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carroll J, Neitz M, Hofer H, Neitz J, Williams DR. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci U S A. 2004;101:8461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carroll J, Rossi EA, Porter J, Neitz J, Roorda A, Williams DR, et al. Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic. Vision Res. 2010;50:1989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, et al. Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol. 2013;156:487–501.e1.

    Article  CAS  PubMed  Google Scholar 

  40. Auricchio A, Trapani I, Allikmets R. Gene therapy of ABCA4-associated diseases. Cold Spring Harb Perspect Med. 2015;5:a017301.

    Article  PubMed  Google Scholar 

  41. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy. Nat Genet. 1997;15:236–46.

    Article  CAS  PubMed  Google Scholar 

  42. Molday LL, Rabin AR, Molday RS. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet. 2000;25:257–8.

    Article  CAS  PubMed  Google Scholar 

  43. Sparrow JR, Fishkin N, Zhou J, Cai B, Jang YP, Krane S, et al. A2E, a byproduct of the visual cycle. Vision Res. 2003;43:2983–90.

    Article  CAS  PubMed  Google Scholar 

  44. Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138:55–63.

    Article  PubMed  Google Scholar 

  45. Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2000;41:1981–9.

    CAS  PubMed  Google Scholar 

  46. Vandenbroucke T, Buyl R, De Zaeytijd J, Bauwens M, Uvijls A, De Baere E, et al. Colour vision in Stargardt disease. Ophthalmic Res. 2015;54:181–94.

    Article  PubMed  Google Scholar 

  47. Pinckers A, Uvijls A. The luminance fall in anomaloscope examination: clinical examples. Acta Ophthalmol Scand. 2000;78:465–7.

    Article  CAS  PubMed  Google Scholar 

  48. Maia-Lopes S, Silva ED, Silva MF, Reis A, Faria P, Castelo-Branco M. Evidence of widespread retinal dysfunction in patients with stargardt disease and morphologically unaffected carrier relatives. Invest Ophthalmol Vis Sci. 2008;49:1191–9.

    Article  PubMed  Google Scholar 

  49. Pokorny J, Smith VC, Ernest JT. Macular color vision defects: specialized psychophysical testing in acquired and hereditary chorioretinal diseases. Int Ophthalmol Clin. 1980;20:53–81.

    Article  CAS  PubMed  Google Scholar 

  50. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci. 2000;97:12758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marquardt A, Stöhr H, Passmore LA, Krämer F, Rivera A, Weber BH. Mutations in a novel gene, VMD2; encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet. 1998;7:1517–25.

    Article  CAS  PubMed  Google Scholar 

  52. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien L-T. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev. 2008;88:639–72.

    Article  CAS  PubMed  Google Scholar 

  53. Campos SH, Forjaz V, Kozak LR, Silva E, Castelo-Branco M. Quantitative phenotyping of chromatic dysfunction in best macular dystrophy. Arch Ophthalmol (Chic Ill 1960). 2005;123:944–9.

    Article  Google Scholar 

  54. McClements M, Davies WIL, Michaelides M, Carroll J, Rha J, Mollon JD, et al. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Res. 2013;80:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baraas RC, Carroll J, Gunther KL, Chung M, Williams DR, Foster DH, et al. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Schooneveld MJ, Went LN, Oosterhuis JA. Dominant cone dystrophy starting with blue cone involvement. Br J Ophthalmol. 1991;75:332–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bresnick GH, Smith VC, Pokorny J. Autosomal dominantly inherited macular dystrophy with preferential short-wavelength sensitive cone involvement. Am J Ophthalmol. 1989;108:265–76.

    Article  CAS  PubMed  Google Scholar 

  58. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jacobson SG, Roman AJ, Aleman TS, Sumaroka A, Herrera W, Windsor EAM, et al. Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51:1079–85.

    Article  PubMed  Google Scholar 

  60. Swanson WH, Fish GE. Color matches in diseased eyes with good acuity: detection of deficits in cone optical density and in chromatic discrimination. J Opt Soc Am A Opt Image Sci Vis. 1995;12:2230–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pinckers A, van Aarem A, Keunen JE. Colour vision in retinitis pigmentosa. Influence of cystoid macular edema. Int Ophthalmol. 1993;17:143–6.

    Article  CAS  PubMed  Google Scholar 

  62. Scholl HPN, Kremers J. Large phase differences between L-cone– and M-cone–driven electroretinograms in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41:3225–33.

    CAS  PubMed  Google Scholar 

  63. Scholl HPN, Kremers J. Alterations of L- and M-cone driven ERGs in cone and cone–rod dystrophies. Vision Res. 2003;43:2333–44.

    Article  PubMed  Google Scholar 

  64. Scholl HP, Kremers J, Vonthein R, White K, Weber BH. L- and M-cone-driven electroretinograms in Stargardt’s macular dystrophy-fundus flavimaculatus. Invest Ophthalmol Vis Sci. 2001;42:1380–9.

    CAS  PubMed  Google Scholar 

  65. Scholl HPN, Kremers J, Apfelstedt-Sylla E, Zrenner E. L- and M-cone driven ERGs are differently altered in Best’s macular dystrophy. Vision Res. 2000;40:3159–68.

    Article  CAS  PubMed  Google Scholar 

  66. Kuchenbecker JA, Greenwald SH, Neitz M, Neitz J. Cone-isolating ON-OFF electroretinogram for studying chromatic pathways in the retina. J Opt Soc Am A Opt Image Sci Vis. 2014;31:A208–13.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harmening WM, Tuten WS, Roorda A, Sincich LC. Mapping the perceptual grain of the human retina. J Neurosci. 2014;34:5667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krill AE, Archer DB, editors. Krill’s hereditary retinal and choroidal disease. Hagerstown: Harper & Row; 1977.

    Google Scholar 

  69. Hood DC, Benimoff NI, Greenstein VC. The response range of the blue-cone pathways: a source of vulnerability to disease. Invest Ophthalmol Vis Sci. 1984;25:864–7.

    CAS  PubMed  Google Scholar 

  70. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, et al. Diabetic retinopathy seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11.

    Article  CAS  PubMed  Google Scholar 

  72. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol. 2000;28:3–8.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Wang N, Barile GR, Bao S, Gillies M. Diabetic retinopathy: neuron protection as a therapeutic target. Int J Biochem Cell Biol. 2013;45:1525–9.

    Article  CAS  PubMed  Google Scholar 

  74. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103:1820–8.

    Article  CAS  PubMed  Google Scholar 

  75. Rodgers M, Hodges R, Hawkins J, Hollingworth W, Duffy S, McKibbin M, et al. Colour vision testing for diabetic retinopathy: a systematic review of diagnostic accuracy and economic evaluation. Health Technol Assess. 2009;13. Available from: http://www.journalslibrary.nihr.ac.uk/hta/volume-13/issue-60. Accessed 7Oct 7, 2015.

  76. Kurtenbach A, Kernstock C, Zrenner E, Langrová H. Electrophysiology and colour: a comparison of methods to evaluate inner retinal function. Doc Ophthalmol Adv Ophthalmol. 2015;131:159–67.

    Article  CAS  Google Scholar 

  77. Mangione CM, Lee PP, Gutierrez PR, et al. Development of the 25-list-item national eye institute visual function questionnaire. Arch Ophthalmol. 2001;119:1050–8.

    Article  CAS  PubMed  Google Scholar 

  78. Bearse MA, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:3259–65.

    Article  PubMed  Google Scholar 

  79. Bresnick GH. Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol (Chic Ill 1960). 1986;104:989–90.

    Article  CAS  Google Scholar 

  80. Greenstein VC, Shapiro A, Zaidi Q, Hood DC. Psychophysical evidence for post-receptoral sensitivity loss in diabetics. Invest Ophthalmol Vis Sci. 1992;33:2781–90.

    CAS  PubMed  Google Scholar 

  81. Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev. 2001;17:12–8.

    Article  CAS  PubMed  Google Scholar 

  82. O’Neill-Biba M, Sivaprasad S, Rodriguez-Carmona M, Wolf JE, Barbur JL. Loss of chromatic sensitivity in AMD and diabetes: a comparative study. Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt Optom. 2010;30:705–16.

    Article  Google Scholar 

  83. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prum Jr. BE, Lim MC, Mansberger SL, Stein JD, Moroi SE, Gedde SJ, et al. Primary open-angle glaucoma suspect preferred practice pattern® guidelines. Ophthalmology. http://www.sciencedirect.com/science/article/pii/S0161642015012786. Accessed 19 Nov, 2015.

  85. Prum BE, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al. Primary open-angle glaucoma preferred practice pattern® guidelines. Ophthalmology. 2015 http://linkinghub.elsevier.com/retrieve/pii/S0161642015012762. Accessed 19 Nov, 2015.

  86. Morgan WH, Balaratnasingam C, Lind CRP, Colley S, Kang MH, House PH, et al. Cerebrospinal fluid pressure and the eye. Br J Ophthalmol. 2016;100(1):71–7. bjophthalmol – 2015–306705.

    Article  PubMed  Google Scholar 

  87. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.

    Article  CAS  PubMed  Google Scholar 

  88. Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O’Neill EC, et al. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res. 2011;93:204–12.

    Article  CAS  PubMed  Google Scholar 

  89. Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck NS, Funke S, Wilding C, et al. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res. 2013;36:199–216.

    Article  CAS  PubMed  Google Scholar 

  90. Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60:310–26.

    Article  PubMed  Google Scholar 

  91. Fortune B, Cull G, Reynaud J, Wang L, Burgoyne CF. Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma. Investig OpthalmolVis Sci. 2015;56:3936.

    Article  CAS  Google Scholar 

  92. Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015;141:164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    Article  CAS  PubMed  Google Scholar 

  94. Jonas JB, Dichtl A. Evaluation of the retinal nerve fiber layer. Surv Ophthalmol. 1996;40:369–78.

    Article  CAS  PubMed  Google Scholar 

  95. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95:357–63.

    Article  CAS  PubMed  Google Scholar 

  96. Morgan JE. Selective cell death in glaucoma: does it really occur? Br J Ophthalmol. 1994;78:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dandona L, Hendrickson A, Quigley HA. Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 1991;32:1593–9.

    CAS  PubMed  Google Scholar 

  98. Anderson RS. The psychophysics of glaucoma: improving the structure/function relationship. Prog Retin Eye Res. 2006;25:79–97.

    Article  PubMed  Google Scholar 

  99. Sample PA, Weinreb RN, Boynton RM. Acquired dyschromatopsia in glaucoma. Surv Ophthalmol. 1986;31:54–64.

    Article  CAS  PubMed  Google Scholar 

  100. Drance SM, Lakowski R, Schulzer M, Douglas GR. Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope as predictors of glaucomatous field change. Arch Ophthalmol (Chic Ill 1960). 1981;99:829–31.

    Article  CAS  Google Scholar 

  101. Lakowski R. The Pickford-Nicolson anomaloscope as a test for acquired dyschromatopsias. Mod Probl Ophthalmol. 1972;11:25–33.

    CAS  PubMed  Google Scholar 

  102. Airaksinen PJ, Lakowski R, Drance SM, Price M. Color vision and retinal nerve fiber layer in early glaucoma. Am J Ophthalmol. 1986;101:208–13.

    Article  CAS  PubMed  Google Scholar 

  103. Hamill TR, Post RB, Johnson CA, Keltner JL. Correlation of color vision deficits and observable changes in the optic disc in a population of ocular hypertensives. Arch Ophthalmol (Chic Ill 1960). 1984;102:1637–9.

    Article  CAS  Google Scholar 

  104. Köllner H. Die Störungen des Farbsinnes. Berlin: Karger; 1912.

    Google Scholar 

  105. Yamazaki Y, Lakowski R, Drance SM. A comparison of the blue color mechanism in high- and low-tension glaucoma. Ophthalmology. 1989;96:12–5.

    Article  CAS  PubMed  Google Scholar 

  106. Greenstein VC, Halevy D, Zaidi Q, Koenig KL, Ritch RH. Chromatic and luminance systems deficits in glaucoma. Vision Res. 1996;36:621–9.

    Article  CAS  PubMed  Google Scholar 

  107. Sample PA, Boynton RM, Weinreb RN. Isolating the color vision loss in primary open-angle glaucoma. Am J Ophthalmol. 1988;106:686–91.

    Article  CAS  PubMed  Google Scholar 

  108. Sample PA. Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function. Prog Retin Eye Res. 2000;19:369–83.

    Article  CAS  PubMed  Google Scholar 

  109. Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Investig Opthalmol Vis Sci. 2006;47:3381.

    Article  Google Scholar 

  110. Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. Sensitivity loss in early glaucoma can be mapped to an enlargement of the area of complete spatial summation. Investig Opthalmol Vis Sci. 2010;51:6540.

    Article  Google Scholar 

  111. Redmond T, Zlatkova MB, Vassilev A, Garway-Heath DF, Anderson RS. Changes in Ricco’s area with background luminance in the S-cone pathway: optom. Vis Sci. 2013;90:66–74.

    Article  Google Scholar 

  112. Ricco A. Relazione fra il minimo angolo visuale e l’intensità luminosa. Mem Della Regia Acad Sci Lett Ed Arti Modena. 1877;17:47–160.

    Google Scholar 

  113. Antón A, Capilla P, Morilla-Grasa A, Luque MJ, Artigas JM, Felipe A. Multichannel functional testing in normal subjects, glaucoma suspects, and glaucoma patients. Investig Opthalmol Vis Sci. 2012;53:8386.

    Article  Google Scholar 

  114. Weber AJ, Chen H, Hubbard WC, Kaufman PL. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 2000;41:1370–9.

    CAS  PubMed  Google Scholar 

  115. Yücel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–22.

    PubMed  Google Scholar 

  116. Katz B. The dyschromatopsia of optic neuritis: a descriptive analysis of data from the optic neuritis treatment trial. Trans Am Ophthalmol Soc. 1995;93:685–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Silverman SE, Hart WM, Gordon MO, Kilo C. The dyschromatopsia of optic neuritis is determined in part by the foveal/perifoveal distribution of visual field damage. Invest Ophthalmol Vis Sci. 1990;31:1895–902.

    CAS  PubMed  Google Scholar 

  118. Skidd PM, Lessell S, Cestari DM. Autosomal dominant hereditary optic neuropathy (ADOA): a review of the genetics and clinical manifestations of ADOA and ADOA+. Semin Ophthalmol. 2013;28:422–6.

    Article  CAS  PubMed  Google Scholar 

  119. Effects of idebenone on color vision in patients with Leber hereditary optic neuropathy. http://pubmedcentralcanada.ca/pmcc/articles/PMC3658961/;jsessionid=849539C2104C5431E02A2F5A49B0A573.eider?lang=en-ca. Accessed 27 Nov, 2015.

  120. Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc. 2000;98:223.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ventura DF, Gualtieri M, Oliveira AGF, Costa MF, Quiros P, Sadun F, et al. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2007;48:2362–70.

    Article  PubMed  Google Scholar 

  122. Quiros PA, Torres RJ, Salomao S, Berezovsky A, Carelli V, Sherman J, et al. Colour vision defects in asymptomatic carriers of the Leber’s hereditary optic neuropathy (LHON) mtDNA 11778 mutation from a large Brazilian LHON pedigree: a case-control study. Br J Ophthalmol. 2006;90:150–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jaeger W. [Hereditary optic atrophy with dominant transmission; with special reference to the associated color-sense disorder]. Albrecht Von Graefes Arch Für Ophthalmol. 1954;155:457–84.

    Article  CAS  Google Scholar 

  124. Votruba M, Fitzke FW, Holder GE, Carter A, Bhattacharya SS, Moore AT. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol (Chic Ill 1960). 1998;116:351–8.

    Article  CAS  Google Scholar 

  125. Hart Jr WM. Acquired dyschromatopsias. Surv Ophthalmol. 1987;32:10–31.

    Article  PubMed  Google Scholar 

  126. Adachi-Usami E, Tsukamoto M, Shimada Y. Color vision and color pattern visual evoked cortical potentials in a patient with acquired cerebral dyschromatopsia. Doc Ophthalmol Adv Ophthalmol. 1995;90:259–69.

    Article  CAS  Google Scholar 

  127. Bouvier SE, Engel SA. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex. 2006;16:183–91.

    Article  PubMed  Google Scholar 

  128. Crognale MA, Duncan CS, Shoenhard H, Peterson DJ, Berryhill ME. The locus of color sensation: cortical color loss and the chromatic visual evoked potential. J Vis. 2013;13. http://www.journalofvision.org/content/13/10/15. Accessed 31 Aug, 2013.

    Google Scholar 

  129. Swanson WH, Sun H, Lee BB, Cao D. Responses of primate retinal ganglion cells to perimetric stimuli. Invest Ophthalmol Vis Sci. 2011;52:764–71.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol. 1995;47:425–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cord Huchzermeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huchzermeyer, C., Kremers, J., Barbur, J. (2016). Color Vision in Clinical Practice. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_10

Download citation

Publish with us

Policies and ethics