Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 230))

Abstract

The innate and adaptive immune system plays an important role in diverse forms of central nervous system (CNS) pathologies including neurodegenerative diseases and peripheral nerve injury. Evidence for an innate inflammatory response in Alzheimer’s disease (AD) was described 20 years ago, and subsequent studies have documented roles of inflammation in Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and a growing number of other CNS pathologies. Although inflammation may not be the initiating factor for neurodegenerative pathologies, experimental data suggests that persistent inflammatory responses involving microglia and astrocytes, as well as blood monocyte-derived macrophages, clearly contribute to disease progression.

High levels of hydrogen sulfide exert toxic effects to CNS. On the other hand, low and physiological levels of H2S may have beneficial effects on number of tissues including CNS. For example, a number of studies have reported that H2S exerts anti-inflammatory and anti-apoptotic effects in CNS. In this chapter, studies related to the role of H2S in neuroinflammation and neurodegeneration will be reviewed and discussed. In particular, we will focus on the role of H2S in neuroinflammation associated with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334. doi:10.1038/35072550

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S (2006) Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol 60:260–264. doi:10.1002/ana.20937

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises Parkin’s protective function. Science 304:1328–1331. doi:10.1126/science.1093891

    Article  CAS  PubMed  Google Scholar 

  • Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi:10.1016/s1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348. doi:10.1038/334345a0

    Article  CAS  PubMed  Google Scholar 

  • Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9:135–146. doi:10.1111/j.1474-9726.2009.00543.x

    Article  CAS  PubMed  Google Scholar 

  • Hu LF, Zheng G, Zweier JL, Deshpande S, Irani K, Ziegelstein RC (2009) NADPH oxidase activation increases the sensitivity of intracellular Ca2+ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem 275:15749–15757

    Article  Google Scholar 

  • Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, Ichinose F (2010) Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal 15:343–352. doi:10.1089/ars.2010.3671

    Article  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167

    CAS  PubMed  Google Scholar 

  • Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Tazzari V, Giustarini D, Rossi R, Sparatore A, Del Soldato P, McGeer E, McGeer PL (2010) Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. J Biol Chem 285:17318–17328. doi:10.1074/jbc.M110.115261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103–113

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Zhao FF, Tang JJ, Su CJ, Fan Y, Ding JH, Bian JS, Hu G (2012) The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal 17:849–859. doi:10.1089/ars.2011.4507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325. doi:10.1146/annurev-genom-082410-101440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173:196–204. doi:10.1007/s00221-006-0461-3

    Article  PubMed  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72. doi:10.1126/scisignal.2000464

    PubMed Central  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The Parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. doi:10.1007/s00441-004-0938-y

    Article  PubMed  Google Scholar 

  • Shirozu K, Tokuda K, Marutani E, Lefer D, Wang R, Ichinose F (2013) Cystathionine gamma-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid Redox Signal. doi:10.1089/ars.2013.5354

    PubMed  Google Scholar 

  • Tokuda K, Kida K, Marutani E, Crimi E, Bougaki M, Khatri A, Kimura H, Ichinose F (2012) Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid Redox Signal 17:11–21. doi:10.1089/ars.2011.4363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Twelves D, Perkins KS, Counsell C (2003) Systematic review of incidence studies of Parkinson’s disease. Mov Disord 18:19–31. doi:10.1002/mds.10305

    Article  PubMed  Google Scholar 

  • Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, Ko HS, Lee YI, Dawson VL, Dawson TM, Sen N, Snyder SH (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 4:1626. doi:10.1038/ncomms2623

    Article  PubMed Central  PubMed  Google Scholar 

  • Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2009) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154. doi:10.1089/ars.2009.2899

    Article  Google Scholar 

  • Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 101:10810–10814. doi:10.1073/pnas.0404161101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275. doi:10.1016/j.lfs.2009.05.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumito Ichinose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kida, K., Ichinose, F. (2015). Hydrogen Sulfide and Neuroinflammation. In: Moore, P., Whiteman, M. (eds) Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-18144-8_9

Download citation

Publish with us

Policies and ethics