Skip to main content

12 Patterns of Wear in Total Knee Replacement

  • Chapter
The Unhappy Total Knee Replacement

Abstract

Wear is one of the major factors affecting long-term survivorship of total knee replacement (TKR). The progressive release of wear particles is attributed to the amount and type of loading and the bearing materials as well as the component orientation and the surrounding medium. As a result, various modes of surface damage occur in vivo which remain visible at the retrieved components supporting the explanation of the tribological interactions in the artificial joint. The most important patterns of wear at the articulating surfaces of TKR are burnishing, scratching, pitting, delamination, as well as third-body wear and creeping. In the following chapter, we describe the tribological background of these wear patterns and additionally support the findings with illustrations of retrievals. This allows identification of clinically relevant wear patterns and reproducing the reasons for wear particle formation and implant failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diduch DR, Insall JN, Scott WN, Scuderi GR, FontRodriguez D. Total knee replacement in young, active patients – long-term follow-up and functional outcome. J Bone J Surg. 1997;79A(4):575–82.

    Google Scholar 

  2. Liau JJ, Cheng CK, Huang CH, Lo WH. The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis. Clin Biomech. 2002;17(2):140–6.

    Article  Google Scholar 

  3. Hofmann S, Romero J, Roth-Schiffl E, Albrecht T. Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade. 2003;32(6):469–76.

    CAS  PubMed  Google Scholar 

  4. Harrysson OLA, Robertsson O, Nayfeh JF. Higher cumulative revision rate of knee arthroplasties in younger patients with osteoarthritis. Clin Orthop Relat Res. 2004;421:162–8.

    Article  PubMed  Google Scholar 

  5. Bader R, Mittelmeier W, Steinhauser E. Failure analysis of total knee replacement. Basics and methodological aspects of the damage analysis. Orthopade. 2006;35(9):896–903.

    Article  CAS  PubMed  Google Scholar 

  6. Kircher J, Bergschmidt P, Bader R, Kluess D, Besser-Mahuzir E, Leder A, et al. The importance of wear couples for younger endoprosthesis patients. Orthopade. 2007;36(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  7. Fisher J, Bell J, Barbour PSM, Tipper JL, Matthews JB, Besong AA, et al. A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Inst Mech Eng H. 2001;215(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  8. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  9. Schroer WC, Berend KR, Lombardi AV, Barnes CL, Bolognesi MP, Berend ME, et al. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty. 2013;28(8):116–9.

    Article  PubMed  Google Scholar 

  10. Abicht C. Künstliche Kniegelenke nach dem Viergelenkprinzip. Dissertation, University of Greif​swald; 2005. URL: http://ub-ed.ub.uni-greifswald.de/opus/volltexte/2006/74. Accessed 2014.

  11. Rawlinson JJ, Furman BD, Li S, Wright TM, Bartel DL. Retrieval, experimental, and computational assessment of the performance of total knee replacements. J Orthop Res. 2006;24(7):1384–94.

    Article  PubMed  Google Scholar 

  12. Vaidya C, Alvarez E, Vinciguerra J, Bruce DA, DesJardins JD. Reduction of total knee replacement wear with vitamin E blended highly cross-linked ultra-high molecular weight polyethylene. Proc Inst Mech Eng H. 2011;225(H1):1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lee JKL, Maruthainar K, Wardle N, Haddad F, Blunn GW. Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee. 2009;16(4):269–74.

    Article  PubMed  Google Scholar 

  14. Reich J, Hovy L, Lindenmaier HL, Zeller R, Schwiesau J, Thomas P, et al. Preclinical evaluation of coated knee implants for allergic patients. Orthopade. 2010;39(5):495–502.

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DL, Burstein AH, Santavicca EA, Insall JN. Performance of the tibial component in total knee replacement – conventional and revision designs. J Bone Joint Surg. 1982;64(7):1026–33.

    CAS  PubMed  Google Scholar 

  16. Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultrahigh molecular-weight components for total joint replacement. J Bone Joint Surg. 1986;68A(7):1041–51.

    Google Scholar 

  17. Bartel DL, Rawlinson JJ, Burstein AH, Ranawat CS, Flynn WF. Stresses in polyethylene components of contemporary total knee replacements. Clin Orthop Relat Res. 1995;317:76–82.

    PubMed  Google Scholar 

  18. Collier JP, Mayor MB, Mcnamara JL, Surprenant VA, Jensen RE. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin Orthop Relat Res. 1991;273:232–42.

    PubMed  Google Scholar 

  19. Willie BM, Foot LJ, Prall MW, Bloebaum RD. Surface damage analysis of retrieved highly crosslinked polyethylene tibial components after short-term implantation. J Biomed Mater Res B Appl Biomater. 2008;85(1):114–24.

    Article  CAS  PubMed  Google Scholar 

  20. VDI 3822–5. Failure analysis – failures caused by tribology working conditions. 1979.

    Google Scholar 

  21. Schmalzried TP, Callaghan JJ. Wear in total hip and knee replacements. J Bone Joint Surg. 1999;81A(1):115–36.

    Google Scholar 

  22. Czichos H. Tribologie-Handbuch. 3rd ed. Wiesbaden: Vieweg+Teubner Verlag; 2010.

    Book  Google Scholar 

  23. Hood RW, Wright TM, Burstein AH. Retrieval analysis of total knee prostheses – a method and its application to 48 total condylar prostheses. J Biomed Mater Res. 1983;17(5):829–42.

    Article  CAS  PubMed  Google Scholar 

  24. Kurtz SM. UHMWPE biomaterials handbook. Oxford: Elsevier LTD; 2009.

    Google Scholar 

  25. Engh GA, Zimmerman RL, Parks NL, Engh CA. Analysis of wear in retrieved mobile and fixed bearing knee inserts. J Arthroplasty. 2009;24(6):28–32.

    Article  PubMed  Google Scholar 

  26. Kelly NH, Fu RH, Wright TM, Padgett DE. Wear damage in mobile-bearing TKA is as severe as that in fixed-bearing TKA. Clin Orthop Relat Res. 2011;469(1):123–30.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rostoker W. The appearances of wear on polyethylene – a comparison of in vivo and in vitro wear surfaces. J Biomed Mater Res. 1978;12(3):317–35.

    Article  CAS  PubMed  Google Scholar 

  28. Landy MM, Walker PS. Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses. J Arthroplasty. 1988;3(Suppl):73–85.

    Article  Google Scholar 

  29. Muratoglu OK, Ruberti J, Melotti S, Spiegelberg SH, Greenbaum ES, Harris WH. Optical analysis of surface changes on early retrievals of highly cross-linked and conventional polyethylene tibial inserts. J Arthroplasty. 2003;18(7):42–7.

    Article  PubMed  Google Scholar 

  30. Zhu YH, Chiu KY, Tang WM. Polyethylene wear and osteolysis in total hip arthroplasty. J Orthop Surg (Hong Kong). 2001;9(1):91–9.

    Google Scholar 

  31. Harrasser N. Tribologische Untersuchung von crosslinked Polyethylen Inlays im Kniesimulatorversuch. Dissertation, University ofMunich; 2010. URN: urn:nbn:de:bvb:19-116357. Accessed 2014.

    Google Scholar 

  32. Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. Third -body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Int J Artif Organs. 2013;36(1):47–55.

    Google Scholar 

  33. Lu YC, Huang CH, Chang TK, Ho FY, Cheng CK, Huang CH. Wear-pattern analysis in retrieved tibial inserts of mobile-bearing and fixed-bearing total knee prostheses. J Bone Joint Surg. 2010;92B(4):500–7.

    Article  Google Scholar 

  34. Lewis G. Polyethylene wear in total hip and knee arthroplasties. J Biomed Mater Res. 1997;38(1):55–75.

    Article  CAS  PubMed  Google Scholar 

  35. McGloughlin TM, Kavanagh AG. Wear of ultra-high molecular weight polyethylene (UHMWPE) in total knee prostheses: a review of key influences. Proc Inst Mech Eng H. 2000;214(4):349–59.

    Article  CAS  PubMed  Google Scholar 

  36. Wimmer MA, Laurent MP, Haman JD, Jacobs JJ, Galante JO. Surface damage versus tibial polyethylene insert conformity: a retrieval study. Clin Orthop Relat Res. 2012;470(7):1814–25.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cho CH, Murakami T, Sawae Y, Sakai N, Miura H, Kawano T, et al. Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis. Proc Inst Mech Eng H. 2004;218(4):251–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kaddick C, Catelas I, Pennekamp PH, Wimmer MA. Implant wear and aseptic loosening. An overview. Orthopade. 2009;38(8):690–7.

    Article  CAS  PubMed  Google Scholar 

  39. Bell CJ, Walker PS, Abeysundera MR, Simmons JMH, King PM, Blunn GW. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components. J Arthroplasty. 1998;13(3):280–90.

    Article  CAS  PubMed  Google Scholar 

  40. Beaule PE, Campbell PA, Walker PS, Schmalzried TP, Dorey FJ, Blunn GW, et al. Polyethylene wear characteristics in vivo and in a knee simulator. J Biomed Mater Res. 2002;60(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  41. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplasty. 1996;11(4):377–89.

    Article  CAS  PubMed  Google Scholar 

  42. Medel FJ, Kurtz SM, Parvizi J, Klein GR, Kraay MJ, Rimnac CM. In vivo oxidation contributes to delamination but not pitting in polyethylene components for total knee arthroplasty. J Arthroplasty. 2011;26(5):802–10.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Greulich MT, Roy ME, Whiteside LA. The influence of sterilization method on articular surface damage of retrieved cruciate-retaining tibial inserts. J Arthroplasty. 2012;27(6):1085–93.

    Article  PubMed  Google Scholar 

  44. Brandt JM, Medley JB, MacDonald SJ, Bourne RB. Delamination wear on two retrieved polyethylene inserts after gamma sterilization in nitrogen. Knee. 2011;18(2):125–9.

    Article  PubMed  Google Scholar 

  45. Ansari F, Chang J, Huddleston III J, Van CD, Ries M, Pruitt L. Fractography and oxidative analysis of gamma inert sterilized posterior-stabilized tibial insert post fractures: report of two cases. Knee. 2013;20(6):609–13.

    Article  PubMed  Google Scholar 

  46. Niki Y, Matsumoto H, Otani T, Tomatsu T, Toyama Y. How much sterile saline should be used for efficient lavage during total knee arthroplasty? Effects of pulse lavage irrigation on removal of bone and cement debris. J Arthroplasty. 2007;22(1):95–9.

    Article  PubMed  Google Scholar 

  47. McKellop HA, D’Lima D. How have wear testing and joint simulator studies helped to discriminate among materials and designs? J Am Acad Orthop Surg. 2008;16 Suppl 1:111–9.

    Google Scholar 

  48. De Baets T, Waelput W, Bellemans J. Analysis of third body particles generated during total knee arthroplasty: is metal debris an issue? Knee. 2008;15(2):95–7.

    Article  PubMed  Google Scholar 

  49. Schroeder C, Grupp TM, Fritz B, Schilling C, Chevalier Y, Utzschneider S, et al. The influence of third-body particles on wear rate in unicondylar knee arthroplasty: a wear simulator study with bone and cement debris. J Mater Sci Mater Med. 2013;24(5):1319–25.

    Article  CAS  PubMed  Google Scholar 

  50. Gotterson PR, Nusem I, Pearcy MJ, Crawford RW. Metal debris from bony resection in knee arthroplasty – is it an issue? Acta Orthop. 2005;76(4):475–80.

    Article  PubMed  Google Scholar 

  51. Wang A, Sun DC, Stark C, Dumbleton JH. Wear mechanisms of UHMWPE in total joint replacements. Wear. 1995;181:241–9.

    Article  Google Scholar 

  52. McKellop HA. The lexicon of polyethylene wear in artificial joints. Biomaterials. 2007;28(34):5049–57.

    Article  CAS  PubMed  Google Scholar 

  53. Knutson K, Jonsson G, Andersen JL, Larusdottir H, Lidgren L. Deformation and loosening of the tibial component in knee arthroplasty with unicompartmental endoprostheses. Acta Orthop. 1981;52(6):667–73.

    Article  CAS  Google Scholar 

  54. Mascard E, Anract P, Touchene A, Pouillart P, Tomeno B. Complications from the hinged GUEPAR prosthesis after resection of knee tumor. 102 cases. Rev Chir Orthop Reparatrice Appar Mot. 1998;84(7):628–37.

    CAS  PubMed  Google Scholar 

  55. Lee JK, Chatrath V, Kim PR. Repeated early failure of a newly designed hinged knee system. J Arthroplasty. 2013;28(2):375.e17–20.

    Article  Google Scholar 

  56. Pacha-Vicente D, Malik A, Castellet-Feliu E, Nardi-Vilardaga J. Dislocation of rotating-hinge knee prostheses with antidislocation mechanism. J Arthroplasty. 2008;23(2):299–303.

    Article  PubMed  Google Scholar 

  57. Reichel H. Current role of hinged implants. In: Total knee arthroplasty – a guide to get better performance. Heidelberg: Springer; 2005. p. 335–40.

    Chapter  Google Scholar 

  58. Zach L, Konvickova S, Ruzicka P. Investigation of in-vivo hinge knee behaviour using a dynamic finite element model of the lower limb. Comput Methods Biomech Biomed Engin. 2012;15 Suppl 1:326–7.

    Article  PubMed  Google Scholar 

  59. Lehner S, Steinhauser E, Mittelmeier W, Stur S, Gradinger R. New compounds for improving wear behavior of a tumor knee endoprosthesis. Biomed Tech. 2001;46(3):75–9.

    Article  CAS  Google Scholar 

  60. Matsumine A, Ueda T, Sugita T, Yazawa Y, Isu K, Kawai A, et al. Clinical outcomes of the KYOCERA Physio Hinge Total Knee System Type III after the resection of a bone and soft tissue tumor of the distal part of the femur. J Surg Oncol. 2011;103(3):257–63.

    Article  PubMed  Google Scholar 

  61. McMaster WC, Patel J. Adverse local tissue response lesion of the knee associated with Morse taper corrosion. J Arthroplasty. 2013;28(2):​375–8.

    Article  PubMed  Google Scholar 

  62. Schramm M, Wirtz DC, Holzwarth U, Pitto RP. The morse taper junction in modular revision hip replacement – a biomechanical and retrieval analysis. Biomed Tech. 2000;45(4):105–9.

    Article  CAS  Google Scholar 

  63. Gilbert JL, Buckley CA, Jacobs JJ. In-vivo corrosion of modular hip-prosthesis components in mixed and similar metal combinations – the effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res. 1993;27(12):1533–44.

    Article  CAS  PubMed  Google Scholar 

  64. Viceconti M, Ruggeri O, Toni A, Giunti A. Design-related fretting wear in modular neck hip prosthesis. J Biomed Mater Res. 1996;30(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  65. Bayley JC, Scott RD, Ewald FC, Holmes Jr GB. Failure of the metal-backed patellar component after total knee replacement. J Bone Joint Surg Am. 1988;70(5):668–74.

    CAS  PubMed  Google Scholar 

  66. Chew FS, Ramsdell MG, Keel SB. Metallosis after total knee replacement. AJR Am J Roentgenol. 1998;170(6):1556. doi:10.2214/ajr.170.6.9609173.

    Article  CAS  PubMed  Google Scholar 

  67. Romesburg JW, Wasserman PL, Schoppe CH. Metallosis and metal-induced synovitis following total knee arthroplasty: review of radiographic and CT findings. J Radiol Case Rep. 2010;4(9):7–17. doi:10.3941/jrcr.v4i9.423.

    PubMed Central  PubMed  Google Scholar 

  68. Takai S, Yoshino N, Kusaka Y, Watanabe Y, Hirasawa Y. Dissemination of metals from a failed patellar component made of titanium-base alloy. J Arthroplasty. 2003;18(7):931–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We kindly thank Mrs. Regina Lange from the Institute of Electronic Appliances and Circuits, University of Rostock, for preparation of the FESEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Bader MD, Dipl.-Ing. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fabry, C., Zietz, C., Dammer, R., Bader, R. (2015). 12 Patterns of Wear in Total Knee Replacement. In: Hirschmann, M., Becker, R. (eds) The Unhappy Total Knee Replacement. Springer, Cham. https://doi.org/10.1007/978-3-319-08099-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08099-4_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08098-7

  • Online ISBN: 978-3-319-08099-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics