Skip to main content

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

Abstract

Carboxypeptidases catalyze the hydrolysis of peptide bonds at the C-terminus of peptides and proteins. This hydrolysis may be a step in the degradation of some substrate molecules or may result in the maturation of others. As for every type of protease, the physiological effect of the hydrolytic action is thus varied and also site- and organism-dependent. Moreover, the car-boxypeptidase action may be carried out by at least two different kinds of enzymes with different catalytic mechanisms. In one case, metallocarboxypeptidases possess a tightly bound Zn2+ atom which is directly involved in catalysis; on the other hand, the serine-carboxypeptidases contain an active Ser residue at the active centre which belongs to the Ser/His/Asp triad characteristic of serine proteinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rawlings ND, Barrett AJ (1994) Classification of peptidases. Meth Enzymol. 244: 1–15

    Article  Google Scholar 

  2. Barrett AJ, Rawlings ND (1993) The many evolutionary families of peptidases. In: FX Avilés (ed.): Innovation in proteases and their inhibitors. Walter de Gruyter, Berlin, 13–30

    Google Scholar 

  3. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Meth Enzymol. 248: 183–228

    Article  PubMed  CAS  Google Scholar 

  4. Barrett AJ, Woessner JFJ, Rawlings ND (eds) (1998) Handbook of Proteolytic Enzymes. Academic Press, London

    Google Scholar 

  5. Skidgel RA (1996) Structure and function of mammalian zinc carboxypeptidases. In: NM Hooper (ed.): Zinc Metalloproteases in Health and Disease. Taylor and Francis, London, 241–283

    Google Scholar 

  6. Avilés FX, Vendrell J, Guasch A, Coll M, Huber R (1993) Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the inhibition process. Eur J Biochem. 211: 381–389

    Article  PubMed  Google Scholar 

  7. Song L, Fricker LD (1997) Cloning and expression of human carboxypeptidase Z, a novel metallocar-boxypeptidase. J Biol Chem. 272: 10543–10550

    Article  PubMed  CAS  Google Scholar 

  8. Blundell TM (1994) Metalloproteinase superfamilies and drug design. Nat Struct Biol. 1: 73–75

    Article  PubMed  CAS  Google Scholar 

  9. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett. 354: 1–6

    Article  PubMed  CAS  Google Scholar 

  10. Hooper NM (1996) The biological roles of zinc and families of zinc metalloproteases. In: Hooper NM (ed.): Zinc Metalloproteases in Health and Disease. Taylor and Francis, London, 1–21

    Google Scholar 

  11. Joris B, Van Beeumen J, Casagrande F, Gerday C, Frere JM, Ghuysen JM (1983) The complete amino acid sequence of the Zn2+-containing D-ALANYL-D-alanine-cleaving carboxypeptidase of Streptomyces albus. Eur J Biochem. 130: 53–69

    Article  PubMed  CAS  Google Scholar 

  12. Dideberg O, Charlier P, Dive G, Joris B, Frere JM, Ghuysen JM (1982) Structure of a Zn2+-containing D-ALANYL-D-alanine-cleaving carboxypeptidase at 2.5 Å resolution. Nature. 299: 46–47

    Article  Google Scholar 

  13. Lee S-H, Taguchi H, Yoshimura E, Minagawa E, Kaminogawa S, Ohta T, Matsuzawa H (1994) Carboxypeptidase Taq, a thermostable zinc enzyme, from Thermus aquaticus YT-1: molecular cloning, sequencing, and expression of the encoding gene in. Escherichia coli. Biosci Biotechnol Biochem. 58: 1490–1495

    Article  CAS  Google Scholar 

  14. Bode W, Gomis-Rüth FX, Stocker W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331: 134–140

    Article  PubMed  CAS  Google Scholar 

  15. Lipscomb WN, Sträter N (1996) Recent advances in zinc enzymology. Chem Rev. 96: 2375–2433

    Article  PubMed  CAS  Google Scholar 

  16. Rowsell S, Pauptit RA, Tucker AD, Melton RG, Blow DM, Brick P (1997) Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy Structure 3: 337–347

    Article  Google Scholar 

  17. Chevrier B, Schalk C, D’Orchymont H, Rondeau JM, Moras D, Tarnus C (1994) Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure. 2: 283–291

    Article  PubMed  CAS  Google Scholar 

  18. Rawlings ND, Barret AJ (1994) Families of serine peptidases. Meth Enzymol. 244: 19–60

    Article  PubMed  CAS  Google Scholar 

  19. Breddam K (1986) Serine carboxypeptidases: a review. Carlsberg Res Commun. 51: 83–128

    Article  CAS  Google Scholar 

  20. Remington SJ, Breddam K (1994) Carboxypeptidases C and D. Meth Enzymol. 244: 231–248

    Article  PubMed  CAS  Google Scholar 

  21. Artymiuk PJ, Grindley HM, Park JE, Rice DW, Willett P (1992) Three-dimensional structural resemblance between leucine aminopeptidase and carboxypeptidase A revealed by graph-theoretical techniques. FEBS Lett. 303: 48–52

    Article  PubMed  CAS  Google Scholar 

  22. Ollis DL, Cheah E, Cygler M, Dykstra B, Frolow F, Fraken S, Harel M, Remington SJ, Silman I, Schrag J, Sussman J, Goldman A (1992) The alpha/beta hydrolase fold. Protein Eng. 5: 197–211

    Article  PubMed  CAS  Google Scholar 

  23. Anson ML (1937) Carboxypeptidase. I. The preparation of crystalline carboxypeptidase. J Gen Physiol. 20: 663–669

    Article  PubMed  CAS  Google Scholar 

  24. Vallee BL, Neurath H (1955) Carboxypeptidase, a zinc metalloenzyme. J Biol Chem. 217: 253–261

    PubMed  CAS  Google Scholar 

  25. Yamasaki M, Brown JR, Cox DJ, Greenshields RN, Wade R, Neurath H (1963) Procarboxypeptidase A-S6. Further studies of its isolation and properties. Biochemistry. 2: 859–866

    Article  PubMed  CAS  Google Scholar 

  26. Puigserver A, Desnuelle P (1977) Reconstitution of bovine procarboxypeptidase A-S6 from the free subunits. Biochemistry. 16: 2497–4501

    Article  PubMed  CAS  Google Scholar 

  27. Kobayashi R, Kobayashi Y, Hirs CHW (1978) Identification of a binary complex of procarboxypeptidase A and a precursor of protease E in porcine pancretic secretion. J Biol Chem. 253: 5526–5530

    PubMed  CAS  Google Scholar 

  28. Pascual R, Burgos FJ, Salvà M, Soriano F, Méndez E, Avilés FX (1989) Purification and properties of five different forms of human procarboxypeptidases. EurJ Biochem. 179: 609–616

    Article  CAS  Google Scholar 

  29. Lacko AG, Neurath H (1970) Studies on procarboxypeptidase A and carboxypeptidase A of the spiny pacific dogfish (Squalus acanthias). Biochemistry. 9: 4680–4690

    Article  PubMed  CAS  Google Scholar 

  30. Reeck GR, Neurath H (1972) Isolation and characterization of pancreatic procarboxypeptidase B and carboxypeptidase B of the African lungfish. Biochemistry. 11: 3947–3955

    Article  PubMed  CAS  Google Scholar 

  31. Bradley G, Naudé RJ, Muramoto K, Yamauchi F, Oelofsen W (1996) Ostrich (Strutio camelus) carboxypeptidase B: purification, kinetic properties and characterization of the pancreatic enzyme. Int J Biochem Cell Biol. 28: 521–529

    Article  PubMed  CAS  Google Scholar 

  32. Narahashi Y (1990) The amino acid sequence of zinc-carboxypeptidase from Streptomyces griseus. J Biochem. 107: 879–886

    PubMed  CAS  Google Scholar 

  33. Osterman AL, Grishin NV, Smulevitch SV, Matz MV, Zagnitko OP, Revina LP, Stepanov VM (1992) Primary structure of carboxypeptidase T: delineation of functionally relevant features in Zn-carboxypeptidase family. Protein Chem. 11: 561–570

    Article  CAS  Google Scholar 

  34. Skidgel RA (1988) Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol Sci. 9: 299–304

    Article  PubMed  CAS  Google Scholar 

  35. Gardell SJ, Craick CS, Clauser E, Goldsmith EJ, Stewart C-B, Graf M, Rutter WJ (1988) A novel rat carboxypeptidase, CPA2: characterization, molecular cloning and evolutionary implications on substrate specificity in the carboxypeptidase gene family. J Biol Chem. 263: 17828–17836

    PubMed  CAS  Google Scholar 

  36. Catasüs L, Vendrell J, Avilés FX, Carreira S, Puigserver A, Billeter M (1995) The sequence and conformation of human pancreatic procarboxypeptidase A2. J Biol Chem. 270: 6651–6657

    Article  PubMed  Google Scholar 

  37. Everitt MT, Neurath H (1980) Rat peritoneal mast cell carboxypeptidase: localization, purification and enzymatic properties. FEBS Lett. 110: 292–296

    Article  PubMed  CAS  Google Scholar 

  38. Scheele G (1986) Two-dimensional electrophoresis in the analysis of exocrine pancreatic proteins. In: VLW Go et al. (eds): The exocrine pancreas. Raven Press, New York, 185–192

    Google Scholar 

  39. Vilanova M, Vendrell J, Lopez MT, Cuchillo CM, Avilés FX (1985) Preparative isolation of the two forms of pig pancreatic procarboxypeptidase A and their monomeric carboxypeptidases A. Biochem J. 22: 605–609

    Google Scholar 

  40. Oppezzo O, Ventura S, Bergman T, Vendrell J, Jörnvall H, Avilés FX (1994) Procarboxypeptidase in rat pancreas. Overall characterization and comparison of the activation processes. Eur J Biochem. 222: 55–63

    Article  PubMed  CAS  Google Scholar 

  41. Gardell SJ, Craick CS, Hilvert D, Urdea MS, Rutter WJ (1985) Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis. Nature. 317: 551–554

    Article  PubMed  CAS  Google Scholar 

  42. Phillips MA, Rutter WJ (1996) Role of the prodomain in folding and secretion of rat pancreatic carboxypeptidase Al. Biochemistry. 35: 6771–6776

    Article  PubMed  CAS  Google Scholar 

  43. Laethem RM, Blumenkopf TA, Cory M, Elwell L, Moxham CP, Ray PH, Walton LM, Smith GK (1996) Expression and characterization of human pancreatic preprocarboxypeptidase Al and preprocarboxypeptidase A2. Arch Biochem Biophys. 332: 8–18

    Article  PubMed  CAS  Google Scholar 

  44. Delk AS, Durie PR, Fletcher TS, Largman C (1985) Radioimmunoassay of active pancreatic enzymes in sera from patients with acute pancreatitis. I. Active carboxypeptidase B. Clin Chem. 31: 1294–1300

    PubMed  CAS  Google Scholar 

  45. Fernstad R, Tyden G, Brattstrom C, Skoldefors H, Carlstrom K, Groth CG, Pousette A (1989) Pancreas-specific protein. New serum marker for graft rejection in pancreas-transplant recipients. Diabetes. 38: 55–56

    PubMed  Google Scholar 

  46. Yamamoto KK, Pousette A, Chow P, Wilson H, el Shami S, French CK (1992) Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J Biol Chem. 267: 2575–2581

    PubMed  CAS  Google Scholar 

  47. Chen CC, Wang SS, Chen TW, Jap TS, Chen SJ, Jeng FS, Lee SD (1996) Serum procarboxypeptidase B, amylase and lipase in chronic renal failure. J Gastroenterol Hepatol. 11: 496–499

    Article  PubMed  CAS  Google Scholar 

  48. Fowke PJ, Hodgkinson SC (1996) The ovine pancreatic protein which binds to insulin-like growth factor binding protein-3 is procarboxypeptidase A. Endocrinology. 150: 51–56

    Article  CAS  Google Scholar 

  49. Normant E, Gros C, Schwartz JC (1995) Carboxypeptidase A isoforms produced by distinct genes or alternative splicing in brain and other extrapancreatic tissues. J Biol Chem. 270: 20543–20549

    Article  PubMed  CAS  Google Scholar 

  50. Normant E, Martres MP, Schwartz JC, Gros C (1995) Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc Natl Acad Sci USA. 92: 12225–12229

    Article  PubMed  CAS  Google Scholar 

  51. Teplyakov A, Polyakov K, Obmolova G, Strokopytov B, Kuranova I, Osterman A, Grishin N, Smulevitch S, Zagnitko O, Galperina O et al. (1992) Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris. Eur J Biochem. 208: 281–288

    Article  PubMed  CAS  Google Scholar 

  52. Rees DC, Lewis M, Lipscomb WN (1983) Refined crystal structure of carboxypeptidase A at 1.54 Å resolution. J Mol Biol. 168: 367–387

    Article  PubMed  CAS  Google Scholar 

  53. Famming Z, Kobe B, Stewart C-B, Rutter WJ, Goldsmith EJ (1991) Structural evolution of an enzyme specificity. The structure of rat carboxypeptidase A2 at 1.9 Å resolution. J Biol Chem. 266: 24606–24612

    Google Scholar 

  54. Schmid MF, Herriott JR (1976) Structure of carboxypeptidase B at 2-8 Å resolution. JMol Biol. 103: 175–190

    Article  CAS  Google Scholar 

  55. Coll M, Guasch A, Avilés FX, Huber R (1991) Three-dimensional structure of porcine procarboxypeptidase B: a structural basis of its inactivity. EMBO J. 10: 1–9

    PubMed  CAS  Google Scholar 

  56. Guasch A, Coll M, Avilés FX, Huber R (1992) Three-dimensional structure of porcine pancreatic procarboxypeptidase A. A comparison of the A and B zymogens and their determinants for inhibition and activation. J Mol Biol. 224: 141–157

    CAS  Google Scholar 

  57. Gomis-Rüth FX, Gómez M, Bode W, Huber R, Avilés FX (1995) The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C. EMBO J. 14: 4387–4394

    PubMed  Google Scholar 

  58. Vallee BL, Auld DS (1990) Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry. 29: 5647–5659

    Article  PubMed  CAS  Google Scholar 

  59. Rees DC, Lipscomb WN (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J Mol Biol. 160: 475–498

    Article  PubMed  CAS  Google Scholar 

  60. Christianson DW, Lipscomb WN (1989) Carboxypeptidase A. Acc Chem Res. 22: 62–69

    Article  CAS  Google Scholar 

  61. Kim H, Lipscomb WN (1991) Comparison of the structures of three carboxypeptidase A-phosphonate complexes determined by X-ray crystallography. Biochemistry. 30: 8171–8180

    Article  PubMed  CAS  Google Scholar 

  62. Hilvert D, Gardell SJ, Rutter WJ, Kaiser ET (1986) Evidence against a crucial role for phenolic hydroxyl of Tyr248 in peptide and ester hydrolysis catalized by carboxypeptidase A: comparative studies on the pH dependencies of the native and Phe248 mutant. J Amer Chem Soc. 108: 5298–5304

    Article  CAS  Google Scholar 

  63. Gardell SJ, Hilvert D, Barnett J, Kaiser ET, Rutter WJ (1987) use of direct mutagenesis to probe the role of Tyrl98 in the catalytic mechanism of carboxypeptidase A. J Biol Chem. 262: 576–582

    PubMed  CAS  Google Scholar 

  64. Phillips MA, Kaplan AP, Rutter WJ, Bartlett PA (1992) Transition-state characterization: a new approach combining inhibitor analogues and variation in enzyme structure. Biochemistry. 31: 959–963

    Article  PubMed  CAS  Google Scholar 

  65. Alvarez-Santos S, González-Lafont A, Lluch JM, Oliva B, Avilés FX (1994) On the water-promoted mechanism of peptide cleavage by carboxypeptidase A. A theoretical study. Can J Chem. 72: 2077–2083

    Article  CAS  Google Scholar 

  66. Mock WL, Zhang JZ (1991) Mechanistically significant diastereoselection in the sulfoximine inhibition of carboxypeptidase A. J Biol Chem. 266: 6393–6400

    PubMed  CAS  Google Scholar 

  67. Auld DS, Galdes A, Geoghegan KF, Holmquist B, Martinelli RA, Vallee BL (1984) Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A. Proc Natl Acad Sci USA. 81: 5041–5045

    Article  PubMed  CAS  Google Scholar 

  68. Folk, Schirmer (1963) The porcine pancreatic carboxypeptidase A system. I. Three forms of the active enzyme. J Biol Chem. 238: 3884–3894

    PubMed  CAS  Google Scholar 

  69. Peterson LM, Holmquist B, Bethune JL (1982) Anal Biochem 125: 420–426

    Article  PubMed  CAS  Google Scholar 

  70. Auld DS, Vallee BL (1970) Kinetics of carboxypeptidase A. II. Inhibitors of the hydrolysis of oligopeptides. Biochemistry. 9: 602–609

    Article  PubMed  CAS  Google Scholar 

  71. Mock WL, Liu Y, Stanford DJ (1996) Arazoformyl peptide surrogates as spectrophotometric kinetic assay substrates for carboxypeptidase A. Anal Biochem. 239: 218–222

    Article  PubMed  CAS  Google Scholar 

  72. Normant E, Schwartz JC, Gros C (1996) A novel 125I]iodinated carboxypeptidase A substrate detects a metallopeptidase activity distinct from carboxypeptidase A in brain. Neuropeptides. 30: 13–17

    Article  PubMed  CAS  Google Scholar 

  73. Plummer TH, Ryan TJ (1981) A potent mercapto bi-product analogue inhibitor for human carboxypeptidase N. Biochem Biophys Res Commun. 98: 448–454

    Article  PubMed  CAS  Google Scholar 

  74. Hass GM, Ryan CA (1981) Carboxypeptidase inhibitor from potatoes. Meth Enzymol. 80: 778–791

    Article  CAS  Google Scholar 

  75. Molina M, Avilés FX, Querol E (1994) C-tail valine is a key residue for the stabilization of the complex between potato inhibitor and carboxypeptidase A. J Biol Chem. 269: 21467–21472

    PubMed  CAS  Google Scholar 

  76. Homandberg GA, Litwiller RD, Peanasky RJ (1989) Carboxypeptidase inhibitors from Ascaris suum: the primary structure. Arch Biochem Biophys. 270: 153–161

    Article  PubMed  CAS  Google Scholar 

  77. Smulevitch SV, Osterman AL, Galperina OV, Matz MV, Zagnitko OP, Kadyrov RM, Tsaplina IA, Grishin NV, Chestukhina GG, Stepanov VM (1991) Molecular cloning and primary structure of Thermoactinomyces vulgaris carboxypeptidase T. A metalloenzyme endowed with dual substrate specificity. FEBS Lett. 291: 75–78

    Article  PubMed  CAS  Google Scholar 

  78. Vendrell J, Cuchillo CM, Avilés FX (1991) The tryptic activation pathway of monomeric procarboxypeptidase A. J Biol Chem. 265: 6949–6953 Villegas V, Vendrell J, Avilés FX (1995) The activation pathway of procarboxyeptidase B from porcine pancreas: participation of the active enzyme in the proteolytic processing. Protein Sci. 4: 1792-1

    Google Scholar 

  79. Conejero-Lara F, Sánchez-Ruiz JM, Mateo PL, Burgos FJ, Vendrell J, Avilés FX (1991) Differential scanning calorimetry study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. Eur J Biochem. 200: 663–670 Villegas V, Azuaga A, Catasüs L, Reverter D, Mateo PL, Avilés FX, Serrano L (1995) Evidence for a two-state transition in the folding process of the activation domain of human procarboxypeptidase A2. Biochemistry. 34: 15105-15110

    Article  PubMed  CAS  Google Scholar 

  80. Villegas S (1994) Caracterización detallada del proceso de activación de la procarboxipeptidasa B mediante el uso de inhibidores. Ph D Thesis. Universitat Autònoma de Barcelona

    Google Scholar 

  81. Springman EB, Dikov MM, Serafin WE (1995) Mast cell procarboxypeptidase A. Molecular modeling and biochemical characterization of its processing within secretory granules. J Biol Chem. 270: 1300–1307

    Article  PubMed  CAS  Google Scholar 

  82. Eaton DL, Malloy BE, Tsai SP, Henzel W, Drayna D (1991) Isolation, molecular cloning and partial characterization of a novel carboxypeptidase B from human plasma. J Biol Chem. 266: 21833–21838 Valnickova Z, Thogersen IB, Christensen S, Chu CT, Pizzo SV, Enghild JJ (1996) Activated human plasma carboxypeptidase B is retained in the blood by binding to alpha2-macroglobulin and pregnancy zone protein. J Biol Chem. 271: 12937-12943

    PubMed  CAS  Google Scholar 

  83. Tan AK, Eaton DL (1995) Activation and characterization of procarboxypeptidase B from human plasma. Biochemistry. 34: 5811–5816

    Article  PubMed  CAS  Google Scholar 

  84. Stevens RL, Qui D, McNeil HP, Friend DS, Hunt JE, Austen KF, Zhang J (1996) Transgenic mice that possess a disrupted mast cell protease 5 (mMCP-5) gene cannot store carboxypeptidase A (mMC-CPA) protein in their granules. FASEB J 10: A1307–A1307

    Google Scholar 

  85. Ventura S, Gomis-Rüth FX, Puigserver A, Avilés FX, Vendrell J (1997) Pancreatic procarboxypeptidases: oligomeric structures and activation processes revisited. Biol Chem. 378: 161–165 Gomis-Rüth Gómez-Ortiz M, Vendrell J, Ventura S, Bode W, Huber R, Avilés FX (1997) Crystal structure of an oligomer of proteolytic zymogens: detailed conformational analysis of the bovine ternary complex and implications for their activation. J Mol Biol. 269: 1-20

    PubMed  CAS  Google Scholar 

  86. Erdös EG, Sloane EM (1962) An enzyme in human blood plasma that inactivates bradykinin and kallidins. Biochem Pharmacol. 11: 585–592 Erdös EG (1979) Kininases. In: EG Erdös (ed.): Handbook of experimental pharmacology, vol 25, Suppl. Springer-Verlag, Heidelberg, 427-448 Plummer TH, Hurwitz MY (1978) Human plasma carboxypeptidase N. Isolation and characterization. J Biol Chem. 253: 3907-3912 Levin Y, Skidgel RA, Erdös EG (1982) Isolation and characterization of the subunits of human plasma carboxypeptidase N (kininase I). Proc Natl Acad Sci USA. 79: 4818-4622

    Article  PubMed  Google Scholar 

  87. Skidgel RA, David RM, Tan F (1989) Human carboxypeptidase M: purification and characterization of a membrane-bound carboxypeptidase that cleaves peptide hormones. J Biol Chem. 264: 2236–2241

    PubMed  CAS  Google Scholar 

  88. Skidgel RA, Deddish PA, Davis RM (1988) Isolation and characterization of a basic carboxypeptidase from human seminal plasma. Arch Biochem Biophys. 267: 660–667

    Article  PubMed  CAS  Google Scholar 

  89. Dragovic T, Schraufnagel DE, Becker RP, Sekosan M, Votta-Velis EG, Erdös EG (1995) Carboxypeptidase M activity is increased in bronchoalveolar lavage in human lung disease. Amer J Respir Crit Care Med. 152: 760–764

    CAS  Google Scholar 

  90. Fricker LD (1988) Carboxypeptidase E. Annu Rev Physiol. 50: 309–321

    Article  PubMed  CAS  Google Scholar 

  91. Fricker LD Snyder SH (1982) Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal cromaffin granules. Proc Natl Acad Sci USA. 79: 3886–3890

    Article  PubMed  CAS  Google Scholar 

  92. Goldstein SM, Wintroub BU (1993) Mast cell proteases. In: MA Kaliner, DD Metcalfe (eds): The mast cell in health and disease. Marcel Dekker, New York, 343–380

    Google Scholar 

  93. Hendriks D, Scharpé S, vanSande M, Lommaert MP (1989) Characterization of a carboxypeptidase in human serum distinct from carboxypeptidase N. J Clin Chem Clin Biochem. 27: 277–285

    PubMed  CAS  Google Scholar 

  94. Wang W, Hendriks DF, Scharpé SS (1994) Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem. 269: 15937–15944

    PubMed  CAS  Google Scholar 

  95. Bajzar L, Manuel R, Nesheim ME (1995) Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem. 270: 14477–14484

    Article  PubMed  CAS  Google Scholar 

  96. Song L, Fricker LD (1995) Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary. J Biol Chem. 270: 25007–25013

    Article  PubMed  CAS  Google Scholar 

  97. Song L, Fricker LD (1996) Tissue distribution and characterization of soluble and membrane-bound forms of metallocarboxypeptidase D. J Biol Chem. 271: 28884–28889

    Article  PubMed  CAS  Google Scholar 

  98. He GP, Muise A, Li AW, Ro Hs (1995) A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature. 378: 92–96

    Article  PubMed  CAS  Google Scholar 

  99. Skidgel RA (1995) Human carboxypeptidase N (lysine carboxypeptidase). Meth Enzymol. 248: 653–663

    Article  PubMed  CAS  Google Scholar 

  100. Deddish PA, Skidgel RA, Kriho VB, Li X-Y, Becker RP, Erdös EG (1990) Carboxypeptidase M in Madin-Darby canine kidney cells. J Biol Chem. 265: 15083–15089

    PubMed  CAS  Google Scholar 

  101. Mitra A, Song L, Fricker LD (1994) The C-terminal region of carboxypeptidase E is involved in membrane binding and intracellular routing in AtT-20 cells. J Biol Chem. 269: 19876–19881

    PubMed  CAS  Google Scholar 

  102. Fricker LD, Das B, Angeletti RH (1990) Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem. 265: 2476–2482

    PubMed  CAS  Google Scholar 

  103. Cole KR, Kumar S, Trong HL, Woodbury RG, Walsh KA, Neurath H (1991) Rat mast cell carboxypeptidase: amino acid sequence and evidence of enzyme activity within mast cell granules. Biochemistry. 30: 648–655

    Article  PubMed  CAS  Google Scholar 

  104. Reynolds DS, Stevens RL, Gurley DS, Lane WS, Austen KF, Serafin WE (1989) Isolation and molecular cloning of mast cell carboxypeptidase A. A novel member of the carboxypeptidase gene family. J Biol Chem. 264: 20094–20099

    PubMed  CAS  Google Scholar 

  105. Manser E, Fernández D, Loo L, Goh PY, Monfries C, Hall C, Lim L (1990) Human carboxypeptidase E. Isolation and characterization of the cDNA, sequence conservation, expression and processing in vitro. Biochem J 267:517–525

    PubMed  CAS  Google Scholar 

  106. Song L, Fricker LD (1997) The pro region is not required for the expression or intracellular routing of carboxypeptidase E. Biochem J. 323: 265–271

    PubMed  CAS  Google Scholar 

  107. Guest PC, Arden SD, Rutherford NG, Hutton JC (1995) The post-translational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans. Mol Cell Endocrinol. 113: 99–108

    Article  PubMed  CAS  Google Scholar 

  108. Song L, Fricker LD (1995) Processing of procarboxypeptidase E into carboxypeptidase E occurs in secretory vesicles. J Neurochem. 65: 444–453

    Article  PubMed  CAS  Google Scholar 

  109. Rehn M, Pihlajaniem T (1995) Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J Biol Chem. 270: 4705–4711

    Article  PubMed  CAS  Google Scholar 

  110. McGwire GB, Tan F, Michel B, Rehli M, Skidgel RA (1997) Identification of a membrane-bound carboxypeptidase as the mammalian homolog of duck gp 180, a hepatitis B virus-binding protein. Life Sci. 60: 715–724

    Article  PubMed  CAS  Google Scholar 

  111. Nagae A, Abe M, Becker RP, Deddish PA, Skidgel RA, Erdös EG (1993) High concentration of carboxypeptidase M in lungs: presence of the enzyme in alveolar type I cells. Amer J Respir Cell Molec Biol. 9: 221–229

    CAS  Google Scholar 

  112. Rehli M, Krause SW, Kreutz M, Andreesen R (1995) Carboxypeptidase M is identical to MAX.1 antigen and its expression is associated with monocyte to macrophage differrenciation. J Biol Chem. 270: 15664–16649

    Article  Google Scholar 

  113. Skidgel RA, McGwire GB, LIXY (1996) Membrane anchoring and release of carboxypeptidase M: implications for extracellular hydrolysis of peptide hormones. Immunopharmacology. 32: 48–52

    Article  PubMed  CAS  Google Scholar 

  114. McGwire GB, Skidgel RA (1995) Extracellular conversion of epidermal growth factor (EGF) to des-Arg53-EGF by carboxypeptidase M. J Biol Chem. 270: 17154–17158

    Article  PubMed  CAS  Google Scholar 

  115. Docherty K, Steiner DF (1982) Post-translational proteolysis in polypeptide hormone biosynthesis. Anna Rev Physiol. 44: 625–638

    Article  CAS  Google Scholar 

  116. Fricker LD, Snyder SH (1983) Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. J Biol Chem. 258: 10950–10955

    PubMed  CAS  Google Scholar 

  117. Fricker LD, Adelman JP, Douglass J, Thompson RC, von Strandmann RP, Hutton J (1989) Isolation and seuqnce analysis of cDNA for rat carboxypeptidase E EC 3.4.17.10], a neuropeptide processing enzyme. Mol Endocrinol. 3: 665–673

    Article  Google Scholar 

  118. Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF, Carroll RJ, Paigen BJ, Leiter EH (1995) Hyperproisulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Gen. 10: 135–142

    Article  CAS  Google Scholar 

  119. Fricker LD, Berman YL, Leiter EH, Devi LA (1996) Carboxypeptidase E activity is deficient in mice with the fat mutation. Effect on peptide processing. J Biol Chem. 271: 30619–30624

    Article  PubMed  CAS  Google Scholar 

  120. Cool DR, Normant E, Shen F, Che HC, Pannell L, Zhuang Y, Loh YP (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell. 88: 73–83

    Article  PubMed  CAS  Google Scholar 

  121. Dikov MM, Springman EB, Yeola S, Serafin WE (1994) Processing of procarboxypeptidase A and other zymogens in murine mast cells. J Biol Chem. 269: 25897–25904

    PubMed  CAS  Google Scholar 

  122. Liao DI, Breddam K, Sweet RM, Bullock T, Remington SJ (1992) Refined atomic model of wheat serine carboxypeptidase II at 2.2 Å resolution. Biochemistry. 31: 9796–9812

    Article  PubMed  CAS  Google Scholar 

  123. Endrizi JA, Breddam K, Remington SJ (1994) 2.8 Å structure of yeast serine carboxypeptidase. Biochemistry. 33: 11106–11120

    Article  Google Scholar 

  124. Rudenko G, Bonten E, d’Azzo A, Hol WG (1995) Three-dimensional structure of the human ‘protective protein’: structure of the precursor form suggests a complex activation mechanism. Structure. 3: 1249–1259

    Article  PubMed  CAS  Google Scholar 

  125. Shilton BH, Li Y, Tessier D, Thomas DY, Cycgler M (1996) Crystallization of a soluble form of the Kexlp serine carboxypeptidase from Saccharomyces cerevisiae. Protein Sci. 5: 395–397

    PubMed  CAS  Google Scholar 

  126. Liao DI, Remington SJ (1991) Structure of wheat serine carboxypeptides II at 3.5 A resolution. A new class of serine proteinase. J Biol Chem. 265: 6528–6531

    Google Scholar 

  127. Mortensen UH, Remington SJ, Breddam K (1994) Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate. Biochemistry. 33: 508–517

    Article  PubMed  CAS  Google Scholar 

  128. Stennicke HR, Mortensen UH, Breddam K (1996) Studies on the hydrolytic properties of (serine) carboxypeptidase Y. Biochemistry. 35: 7131–7141

    Article  PubMed  CAS  Google Scholar 

  129. Tan F, Morris PW, Skidgel RA, Erdös EG (1993) Sequencing and cloning of human prolylcarboxypeptidase (angiotensina C). Similarity to both serine carboxypeptidase and prolylendopeptidase families. J Biol Chem. 268: 16631–16638

    PubMed  CAS  Google Scholar 

  130. Thomas L, Cooper A, Bussey H, Thomas G (1990) Yeast KEXl protease cleaves a prohormone processing intermediate in mammalian cells. J Biol Chem. 265: 10821–10824

    PubMed  CAS  Google Scholar 

  131. Odya CE, Erdös EG (1981) Human prolylcarboxypeptidase. Meth Enzymol. 80: 460–466

    Article  PubMed  CAS  Google Scholar 

  132. Valls LA, Hunter CP, Rothman JH, Stevens TH (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell. 48: 887–897

    Article  PubMed  CAS  Google Scholar 

  133. Thiede B, Wittmann-Liebold B, Bienert M, Krause E (1995) MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. FEBS Lett. 357: 65–69

    Article  PubMed  CAS  Google Scholar 

  134. Olesen K, Mortensen UH, Aasmul-Olsen S, Kielland-Brandt MC, Remington SJ, Breddam K (1994) The activity of carboxypeptidase Y toward substrates with basic PI amino acid residues is drastically increased by mutational replacement of leucine 178. Biochemistry. 33: 11121–11126

    Article  PubMed  CAS  Google Scholar 

  135. Bullock TL, Branchaud B, Remington SJ (1994) Structure of the complex of L-benzylsuccinate with wheat serine carboxypeptidase II at 2.0-A resolution. Biochemistry. 33: 11127–11134

    Article  PubMed  CAS  Google Scholar 

  136. Bullock TL, Breddam K, Remington SJ (1996) Peptide aldehyde complexes with wheat serine carboxypeptidase II: implications for the catalytic mechanism and substrate specificity. J Mol Biol. 255: 714–725

    Article  PubMed  CAS  Google Scholar 

  137. Olesen K, Breddam K (1995) Increase in the PI Lys/leu substrate preference of carboxypeptidase Y by rational design based on known primary and tertiary structures of serine carboxypeptidases. Biochemistry. 34: 15689–15699

    Article  PubMed  CAS  Google Scholar 

  138. Winther JR, Sorensen P (1991) Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Scad Sci USA. 88: 9330–9334

    Article  CAS  Google Scholar 

  139. Sorensen P, Winther JR, Kaarsholm NC, Poulsen FM (1993) The pro region required for folding of carboxypeptidase Y is a partially folded domain with little regular structural core. Biochemistry. 32: 12160–12166

    Article  Google Scholar 

  140. Ramos C, Winther JR, Kielland-Brandt MC (1994) Requirement of the propeptide for in vivo formation of active yeast carboxypeptidase. Y J Biol Chem. 269: 7006–7012

    CAS  Google Scholar 

  141. Ramos C, Winther JR. (1996) Exchange of regions of the carboxypeptidase Y propeptide. Sequence specificity and function in folding in vivo. Eur J Biochem. 242: 29–35

    Article  PubMed  CAS  Google Scholar 

  142. van Voorst F, Kielland-Brandt MC, Winther JR (1996) Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation. J Biol Chem. 271: 841–846

    Article  PubMed  Google Scholar 

  143. Winther JR, Sorensen P (1991) Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Acad Sci USA. 88: 9330–9334

    Article  PubMed  CAS  Google Scholar 

  144. Jackman HL, Tan FL, Tamei H, Beurling-Harbury C, Li XY, Skidgel RA, Erdös EG (1990) A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein”. J Biol Chem. 265: 11265–11272

    PubMed  CAS  Google Scholar 

  145. Elsliger MA, Pshezhetsky AV, Vinogradova MV, Svedas VK, Potier M (1996) Comparative modeling of substrate binding in the S1′ subsite of serine carboxypeptidases from yeast, wheat, and human. Biochemistry. 35: 14899–14909

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Vendrell, J., Avilés, F.X. (1999). Carboxypeptidases. In: Turk, V. (eds) Proteases New Perspectives. MCBU Molecular and Cell Biology Updates. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8737-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8737-3_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9750-1

  • Online ISBN: 978-3-0348-8737-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics