Skip to main content

Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

Fusing multi-modality medical images, such as MR and PET, can provide complementary information to improve the diagnostic performance. But compared to the substantial and available MR data, PET data is always deficient. In this paper, we propose a novel end-to-end network, called Bidirectional GAN, where image contexts and latent vector are effectively used and jointly optimized for brain MR-to-PET synthesis. Specifically, a bidirectional mapping mechanism is designed to embed the diverse brain structural details into the high-dimensional latent space. And then the superior network architecture and the modified loss functions are further utilized to enhance the quality of synthetic images. The most appealing part is that the proposed method can synthesize the plausible PET images while preserving the diverse brain structures of different subjects. The experiments demonstrate that the performance of the proposed method outperforms the state-of-the-art methods in terms of quantitative measures, qualitative evaluation and the improvement of classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ernst, P., Hille, G., Hansen, C., Tönnies, K., Rak, M.: A CNN-based framework for statistical assessment of spinal shape and curvature in whole-body MRI images of large populations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_1

    Chapter  Google Scholar 

  2. Ben-Cohen, A., et al.: Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng. Appl. Artif. Intell. 78, 186–194 (2019)

    Article  Google Scholar 

  3. Li, H., et al.: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med. Phys. 35(8), 3711–3721 (2008)

    Article  Google Scholar 

  4. Burgos, N., et al.: Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imaging 33(12), 2332–2341 (2014)

    Article  Google Scholar 

  5. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  6. Papadimitroulas, P., et al.: Investigation of realistic PET simulations incorporating tumor patient’s specificity using anthropomorphic models: creation of an oncology database. Med. Phys. 40(11), 112506 (2013)

    Article  Google Scholar 

  7. Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39

    Chapter  Google Scholar 

  8. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  9. Xiang, L., Li, Y., Lin, W., Wang, Q., Shen, D.: Unpaired deep cross-modality synthesis with fast training. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 155–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_18

    Chapter  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image synthesis with sketch and color. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2017)

    Google Scholar 

  13. Xian, W., et al.: TextureGAN: controlling deep image synthesis with texture patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2018)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  19. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China under Grant 61872351 and Grant 61771465, in part by the International Science and Technology Cooperation Projects of Guangdong under Grant 2019A050510030, in part by the Strategic Priority CAS Project under Grant XDB38000000, in part by the Major Projects from General Logistics Department of People’s Liberation Army under Grant AWS13C008, and in part by the Shenzhen Key Basic Research Projects under Grant JCYJ2020050718250-6416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Shen, Y., Wang, S., Lei, B. (2020). Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics