Skip to main content

Methods for Spectral CT Imaging

  • Chapter
  • First Online:
Computed Tomography

Abstract

From the earliest days of X-ray computed tomography (CT), it was realized that measurements made with different X-ray spectra could be used to differentiate materials having different atomic numbers. Successful implementation of this technique, often referred to as dual-energy CT, has occurred over the last decade (circa 2009–2019), bringing with it new clinical capabilities. Dual-energy data can be acquired using a number of different techniques, some of which use only a single tube potential and some of which use two tube potential settings. Additionally, while some techniques can be performed without changes in acquisition hardware, others require the use of novel detectors, X-ray beam filters, or even a second source-detector system. Further, after acquisition, a number of different types of images can be formed, including the low- and high-energy spectral images, mixed images that combine these two data sets, material-specific images, and energy-specific images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X, Yu L, Primak AN, McCollough CH. Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys. 2009;36:1602–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  PubMed  Google Scholar 

  3. Kalender WA, Perman WH, Vetter JR, Klotz E. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 1986;13:334–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kelcz F, Joseph PM, Hilal SK. Noise considerations in dual energy CT scanning. Med Phys. 1979;6:418–25.

    Article  CAS  PubMed  Google Scholar 

  5. Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Investig Radiol. 2015;50:114–8.

    Article  Google Scholar 

  6. Primak AN, Ramirez Giraldo JC, Liu X, Yu L, McCollough CH. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutt B, Fenster A. Split-filter computed tomography: a simple technique for dual energy scanning. J Comput Assist Tomogr. 1980;4:501–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ozguner O, Dhanantwari A, Halliburton S, Wen G, Utrup S, Jordan D. Objective image characterization of a spectral CT scanner with dual-layer detector. Phys Med Biol. 2018;63:025027.

    Article  PubMed  CAS  Google Scholar 

  9. Carmi R, Naveh G, Altman A. Material separation with dual-layer CT. IEEE Nucl Sci Symp. 2005;4:1876–8.

    Google Scholar 

  10. Gutjahr R, Halaweish AF, Yu Z, et al. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Investig Radiol. 2016;51:421–9.

    Article  CAS  Google Scholar 

  11. Kappler S, Hannemann T, Kraft E, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. Proc SPIE. 2012;8313:83130X.

    Article  CAS  Google Scholar 

  12. Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52:4679–96.

    Article  CAS  PubMed  Google Scholar 

  13. Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. 2013;40:100901.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu Z, Leng S, Kappler S, et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging (Bellingham). 2016;3:043503.

    Article  Google Scholar 

  15. McCollough C, Leng S, Yu L, Fletcher JG. Dual- and multi-energy computed tomography: principles, technical approaches and clinical applications. Radiology. 2015;273:637–53.

    Article  Google Scholar 

  16. Wu X, Langan DA, Xu D, et al. Monochromatic CT image representation via fast switching dual kVp. Proc SPIE. 2009;7258:725845.

    Article  Google Scholar 

  17. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  18. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  19. Primak AN, Giraldo JC, Eusemann CD, et al. Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol. 2010;195:1164–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu L, Primak AN, Liu X, McCollough CH. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys. 2009;36:1019–24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21:733–44.

    Article  CAS  PubMed  Google Scholar 

  22. Lehmann LA, Alvarez RE, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8:659–67.

    Article  CAS  PubMed  Google Scholar 

  23. Macovski A, Alvarez RE, Chan JL, Stonestrom JP, Zatz LM. Energy dependent reconstruction in X-ray computerized tomography. Comput Biol Med. 1976;6:325–36.

    Article  CAS  PubMed  Google Scholar 

  24. Marshall WH Jr, Alvarez RE, Macovski A. Initial results with prereconstruction dual-energy computed tomography (PREDECT). Radiology. 1981;140:421–30.

    Article  PubMed  Google Scholar 

  25. Heismann B, Leppert J, Stierstorfer K. Density and atomic number measurements with spectral x-ray attenuation method. J Appl Phys. 2003;94:2073–9.

    Article  CAS  Google Scholar 

  26. Eusemann, Christian, David R. Holmes III, Bernhard Schmidt, Thomas G. Flohr, Richard Robb, Cynthia McCollough, David M. Hough et al. “Dual energy CT: How to best blend both energies in one fused image?.” In Medical imaging 2008: visualization, image-guided procedures, and modeling, vol. 6918, p. 691803. International Society for Optics and Photonics, 2008.

    Google Scholar 

  27. Bongartz T, Glazebrook KN, Kavros SJ, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74:1072–7.

    Article  CAS  PubMed  Google Scholar 

  28. Brockmann C, Jochum S, Sadick M, et al. Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Intervent Radiol. 2009;32:630–7.

    Article  PubMed  Google Scholar 

  29. Buerke B, Wittkamp G, Seifarth H, Heindel W, Kloska SP. Dual-energy CTA with bone removal for transcranial arteries: intraindividual comparison with standard CTA without bone removal and TOF-MRA. Acad Radiol. 2009;16:1348–55.

    Article  PubMed  Google Scholar 

  30. Choi HK, Burns LC, Shojania K, et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis. 2012;71:1466–71.

    Article  PubMed  Google Scholar 

  31. Eiber M, Holzapfel K, Frimberger M, et al. Targeted dual-energy single-source CT for characterisation of urinary calculi: experimental and clinical experience. Eur Radiol. 2012;22:251–8.

    Article  PubMed  Google Scholar 

  32. Glazebrook KN, Leng S, Jacobson SR, McCollough CM. Dual-energy CT for evaluation of intra- and extracapsular silicone implant rupture. Case Rep Radiol. 2016;2016:6323709.

    PubMed  PubMed Central  Google Scholar 

  33. Huppertz A, Hermann KG, Diekhoff T, Wagner M, Hamm B, Schmidt WA. Systemic staging for urate crystal deposits with dual-energy CT and ultrasound in patients with suspected gout. Rheumatol Int. 2014;34:763–71.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson TR, Himsl I, Hellerhoff K, et al. Dual-energy CT for the evaluation of silicone breast implants. Eur Radiol. 2013;23:991–6.

    Article  PubMed  Google Scholar 

  35. Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF. Update of dual-energy CT applications in the genitourinary tract. AJR Am J Roentgenol. 2017;208:1185–92.

    Article  PubMed  Google Scholar 

  36. Kiefer T, Diekhoff T, Hermann S, et al. Single source dual-energy computed tomography in the diagnosis of gout: diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet. Eur J Radiol. 2016;85:1829–34.

    Article  PubMed  Google Scholar 

  37. Kulkarni NM, Eisner BH, Pinho DF, Joshi MC, Kambadakone AR, Sahani DV. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37:37–45.

    Article  PubMed  Google Scholar 

  38. Lee YH, Song GG. Diagnostic accuracy of dual-energy computed tomography in patients with gout: a meta-analysis. Semin Arthritis Rheum. 2017;47:95–101.

    Article  PubMed  Google Scholar 

  39. Leng S, Huang A, Cardona JM, Duan X, Williams JC, McCollough CH. Dual-energy CT for quantification of urinary stone composition in mixed stones: a phantom study. AJR Am J Roentgenol. 2016;207:321–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morhard D, Fink C, Graser A, Reiser MF, Becker C, Johnson TR. Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Investig Radiol. 2009;44:293–7.

    Article  Google Scholar 

  41. Primak AN, Fletcher JG, Vrtiska TJ, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol. 2007;14:1441–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qu M, Ramirez-Giraldo JC, Leng S, et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol. 2011;196:1279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schulz B, Kuehling K, Kromen W, et al. Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. AJR Am J Roentgenol. 2012;199:W646–50.

    Article  PubMed  Google Scholar 

  44. Shi D, Xu JX, Wu HX, Wang Y, Zhou QJ, Yu RS. Methods of assessment of tophus and bone erosions in gout using dual-energy CT: reproducibility analysis. Clin Rheumatol. 2015;34:755–65.

    Article  PubMed  Google Scholar 

  45. Sommer WH, Johnson TR, Becker CR, et al. The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Investig Radiol. 2009;44:285–92.

    Article  Google Scholar 

  46. Sun Y, Chen H, Zhang Z, et al. Dual-energy computed tomography for monitoring the effect of urate-lowering therapy in gouty arthritis. Int J Rheum Dis. 2015;18:880–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang LJ, Wu SY, Poon CS, et al. Automatic bone removal dual-energy CT angiography for the evaluation of intracranial aneurysms. J Comput Assist Tomogr. 2010;34:816–24.

    Article  PubMed  Google Scholar 

  48. Okada M, Kunihiro Y, Nakashima Y, et al. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism. Eur J Radiol. 2015;84:172–7.

    Article  PubMed  Google Scholar 

  49. Miura S, Ohno Y, Kimura H, Kichikawa K. Quantitative lung perfused blood volume imaging on dual-energy CT: capability for quantitative assessment of disease severity in patients with acute pulmonary thromboembolism. Acta Radiol. 2015;56:284–93.

    Article  PubMed  Google Scholar 

  50. Sakamoto A, Sakamoto I, Nagayama H, Koike H, Sueyoshi E, Uetani M. Quantification of lung perfusion blood volume with dual-energy CT: assessment of the severity of acute pulmonary thromboembolism. AJR Am J Roentgenol. 2014;203:287–91.

    Article  PubMed  Google Scholar 

  51. Mileto A, Marin D, Alfaro-Cordoba M, et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology. 2014;273:813–20.

    Article  PubMed  Google Scholar 

  52. Zarzour JG, Milner D, Valentin R, et al. Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol (NY). 2017;42:727–34.

    Article  Google Scholar 

  53. Wortman JR, Bunch PM, Fulwadhva UP, Bonci GA, Sodickson AD. Dual-energy CT of incidental findings in the abdomen: can we reduce the need for follow-up imaging? Am J Roentgenol. 2016;207:W58–W68.

    Article  PubMed  Google Scholar 

  54. Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19:13–23.

    Article  PubMed  Google Scholar 

  55. Graser A, Johnson TR, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252:433–40.

    Article  PubMed  Google Scholar 

  56. Arndt N, Staehler M, Siegert S, Reiser MF, Graser A. Dual energy CT in patients with polycystic kidney disease. Eur Radiol. 2012;22:2125–9.

    Article  PubMed  Google Scholar 

  57. Gupta R, Phan CM, Leidecker C, et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. 2010;257:205–11.

    Article  PubMed  Google Scholar 

  58. Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol. 2012;33:1088–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim SJ, Lim HK, Lee HY, et al. Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol. 2012;33:865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ai S, Qu M, Glazebrook KN, et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skelet Radiol. 2014;43:1289–95.

    Article  Google Scholar 

  61. Pache G, Krauss B, Strohm P, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions – feasibility study. Radiology. 2010;256:617–24.

    Article  PubMed  Google Scholar 

  62. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269:525–33.

    Article  PubMed  Google Scholar 

  63. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199:S9–S15.

    Article  PubMed  Google Scholar 

  64. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38:6371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leng S, Yu L, Fletcher JG, McCollough C. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology. 2015;276:562–70.

    Article  PubMed  Google Scholar 

  66. Carrascosa P, Leipsic JA, Capunay C, et al. Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography. Eur J Radiol. 2015;84:1915–20.

    Article  PubMed  Google Scholar 

  67. Nagayama Y, Nakaura T, Oda S, et al. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol. 2018;28:1719–30.

    Article  PubMed  Google Scholar 

  68. Pomerantz SR, Kamalian S, Zhang D, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology. 2013;266:318–25.

    Article  PubMed  Google Scholar 

  69. Schneider D, Apfaltrer P, Sudarski S, et al. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol. 2014;21:431–6.

    Article  PubMed  Google Scholar 

  70. Tsang DS, Merchant TE, Merchant SE, Smith H, Yagil Y, Hua CH. Quantifying potential reduction in contrast dose with monoenergetic images synthesized from dual-layer detector spectral CT. Br J Radiol. 2017;90:20170290.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wichmann JL, Noske EM, Kraft J, et al. Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer. Investig Radiol. 2014;49:735–41.

    Article  Google Scholar 

  72. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.

    Article  PubMed  Google Scholar 

  73. Cha J, Kim HJ, Kim ST, Kim YK, Kim HY, Park GM. Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts. Acta Radiol. 2017;58:1312–9.

    Article  PubMed  Google Scholar 

  74. Dunet V, Bernasconi M, Hajdu SD, Meuli RA, Daniel RT, Zerlauth JB. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping. Neuroradiology. 2017;59:845–52.

    Article  PubMed  Google Scholar 

  75. Filograna L, Magarelli N, Leone A, et al. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies. Skelet Radiol. 2015;44:1287–94.

    Article  Google Scholar 

  76. Stolzmann P, Winklhofer S, Schwendener N, Alkadhi H, Thali MJ, Ruder TD. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9:327–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank colleagues from the Mayo Clinic for their collaboration on dual- and multi-energy CT over the course of many years, including Drs. J.G. Fletcher, Lifeng Yu, Shuai Leng, Amy Kotsenas, Terri Vrtiska, Katie Glazebrook, and Liqiang Ren. She would also like to thank Drs. Thomas Flohr and Bernhard Schmidt, for their collaboration on this topic, and Ms. Kris Nunez, for her expert assistance in manuscript and figure preparation.

Disclosure

Dr. McCollough is the principal investigator of a research grant to the Mayo Clinic from Siemens Healthineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia H. McCollough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCollough, C.H. (2020). Methods for Spectral CT Imaging. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics