Skip to main content

Circulating MicroRNA for the Identification of Forensically Relevant Body Fluids

  • Protocol
  • First Online:
Circulating MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1024))

Abstract

The development of molecular genetics-based body fluid identification methods in forensic science has become necessary to provide greater sensitivity and specificity than that obtained using conventional serological and immunological methods. Numerous studies have demonstrated the ability to identify the body fluid origin of forensically relevant biological stains using messenger RNA expression analysis. However, the length of the amplified products used in these assays may not be ideal for use with highly degraded or environmentally compromised forensic casework samples. Therefore a novel approach to body fluid identification using small RNA profiling (e.g., microRNA or miRNA profiling) was developed in an attempt to improve the success of analysis with highly degraded samples. We have identified a set of nine differentially expressed miRNAs that permit the identification of the body fluid origin of forensic biological stains and in this chapter provide the detailed procedures for performing these assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler J (2012) Advanced topics in forensic DNA typing: methodology. Elsevier/Academic, San Diego, CA

    Google Scholar 

  2. Cook R, Evett I, Jackson G et al (1998) A hierarchy of propositions: deciding which level to address in casework. Sci Justice 38:231–239

    Article  Google Scholar 

  3. Bauer M, Patzelt D (2002) Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci 47:1278–1282

    PubMed  CAS  Google Scholar 

  4. Bauer M, Patzelt D (2003) Protamine mRNA as molecular marker for spermatozoa in semen stains. Int J Legal Med 117:175–179

    PubMed  CAS  Google Scholar 

  5. Fleming R, Harbison S (2010) The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci Int Genet 4:244–256

    Article  PubMed  CAS  Google Scholar 

  6. Haas C, Klesser B, Maake C et al (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88

    Article  PubMed  CAS  Google Scholar 

  7. Haas C, Hanson E, Kratzer A et al (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458

    Article  PubMed  CAS  Google Scholar 

  8. Haas C, Hanson E, Ballantyne J (2012) Capillary electrophoresis of a multiplex reverse ­transcription-polymerase chain reaction to ­target messenger RNA markers for body fluid identification. Methods Mol Biol 830:169–183

    Article  PubMed  CAS  Google Scholar 

  9. Hanson E, Ballantyne J (2010) RNA profiling for the identification of the tissue origin of dried stains in forensic biology. Forensic Sci Rev 22:145–157

    Google Scholar 

  10. Hanson E, Haas C, Jucker R et al (2011) Identification of skin in touch/contact forensic samples by messenger RNA profiling. Forensic Sci Int Genet Supp Ser 3:e306

    Google Scholar 

  11. Hanson E, Haas C, Jucker R et al (2012) Specific and sensitive mRNA biomarkers for the identification of skin in ‘touch DNA’ evidence. Forensic Sci Int Genet 6:548–558

    Article  PubMed  CAS  Google Scholar 

  12. Hanson E, Ballantyne J (2013) Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci Justice 53:14–22

    Google Scholar 

  13. Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96

    Article  PubMed  CAS  Google Scholar 

  14. Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12

    Article  PubMed  CAS  Google Scholar 

  15. Juusola J, Ballantyne J (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 52:1252–1262

    PubMed  CAS  Google Scholar 

  16. Zubakov D, Hanekamp E, Kokshoorn M et al (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122:135–142

    Article  PubMed  Google Scholar 

  17. Alberts B, Bray D, Lewis J et al (1994) Molecular biology of the cell. Garland Publishing Inc, New York

    Google Scholar 

  18. Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335:289–298

    Article  PubMed  CAS  Google Scholar 

  19. Bauer M, Patzelt D (2003) A method for simultaneous RNA and DNA isolation from dried blood and semen stains. Forensic Sci Int 136:76–78

    Article  PubMed  CAS  Google Scholar 

  20. Haas C, Hanson E, Anjos MJ et al (2011) RNA/DNA co-analysis from blood stains—results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6:70–80

    Article  PubMed  Google Scholar 

  21. Parker C, Hanson E, Ballantyne J (2011) Optimization of dried stain co-extraction methods for efficient recovery of high quality DNA and RNA for forensic analysis. Forensic Sci Int Genet Supp Ser 3:e309–e310

    Article  Google Scholar 

  22. Haas C, Hanson E, Bar W et al (2011) mRNA profiling for the identification of blood—results of a collaborative EDNAP exercise. Forensic Sci Int Genet 5:21–26

    Article  PubMed  CAS  Google Scholar 

  23. Haas C, Hanson E, Morling N et al (2011) Collaborative EDNAP exercises on messenger RNA/DNA co-analyis for body fluid identification (blood, saliva, semen) and STR profiling. Forensic Sci Int Genet Supp Ser 3:e5–e6

    Article  Google Scholar 

  24. Setzer M, Juusola J, Ballantyne J (2008) Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J Forensic Sci 53:296–305

    Article  PubMed  CAS  Google Scholar 

  25. Berger C, Parson W (2009) Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples. Forensic Sci Int Genet 3:149–153

    Article  PubMed  CAS  Google Scholar 

  26. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064

    PubMed  CAS  Google Scholar 

  27. Coble MD, Butler JM (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA. J Forensic Sci 50:43–53

    Article  PubMed  CAS  Google Scholar 

  28. Eichmann C, Parson W (2008) ‘Mitominis’: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med 122: 385–388

    Article  PubMed  Google Scholar 

  29. Hill CR, Kline MC, Coble MD et al (2008) Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples. J Forensic Sci 53:73–80

    Article  PubMed  CAS  Google Scholar 

  30. Baroukh N, Ravier MA, Loder MK et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    Article  PubMed  CAS  Google Scholar 

  31. Beuvink I, Kolb FA, Budach W et al (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52

    Article  PubMed  Google Scholar 

  32. Bruchova H, Yoon D, Agarwal AM et al (2007) Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 35:1657–1667

    Article  PubMed  CAS  Google Scholar 

  33. Conaco C, Otto S, Han JJ et al (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427

    Article  PubMed  CAS  Google Scholar 

  34. Garzon R, Pichiorri F, Palumbo T et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103:5078–5083

    Article  PubMed  CAS  Google Scholar 

  35. Krichevsky AM, Sonntag KC, Isacson O et al (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  PubMed  CAS  Google Scholar 

  36. Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  37. Lagos-Quintana M, Rauhut R, Meyer J et al (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  38. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  39. Liang Y, Ridzon D, Wong L et al (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166

    Article  PubMed  Google Scholar 

  40. Masaki S, Ohtsuka R, Abe Y et al (2007) Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun 364: 509–514

    Article  PubMed  CAS  Google Scholar 

  41. Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    Article  PubMed  CAS  Google Scholar 

  42. Zubakov D, Boersma AW, Choi Y et al (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 124:217–226

    Article  PubMed  Google Scholar 

  43. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hanson, E.K., Ballantyne, J. (2013). Circulating MicroRNA for the Identification of Forensically Relevant Body Fluids. In: Kosaka, N. (eds) Circulating MicroRNAs. Methods in Molecular Biology, vol 1024. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-453-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-453-1_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-452-4

  • Online ISBN: 978-1-62703-453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics