Skip to main content

Cell Surface Engineering of Mesenchymal Stem Cells

  • Protocol
  • First Online:
Mesenchymal Stem Cell Assays and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 698))

Abstract

By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197–3207, 2007; Circulation 108:863–868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005–1011; Blood 104:3581–3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs’ native phenotype including their multilineage differentiation capacity, viability, proliferation, and adhesion kinetics. We anticipate that the present approach to covalently modify the cell surface and immobilize required ligands is not limited to MSCs or the SLeX ligand. Therefore, this technology should have broad implications on cell therapies that utilize systemic administration and require targeting of cells to specific tissues. The approach may also be useful to promote specific cell–cell interactions. In this protocol, we describe the conjugation of SLeX on MSC surface and methods to study cell rolling behaviors of SLeX-modified MSCs on a P-selectin coated substrate using an in vitro flow chamber assay. We also provide a brief description of cell characterization assays that can be used to examine the impact of the chemical modification regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Picinich, S. C., Mishra, P. J., Mishra, P. J., Glod, J., and Banerjee, D. (2007) The therapeutic potential of mesenchymal stem cells, Cell and Tissue-Based Therapy, Expert Opinion on Biological Therapy 7, 965–973.

    Article  CAS  Google Scholar 

  2. Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., Craig, R., Wen, Y., Rapp, J. A., and Kessler, J. (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases, JAMA 299, 925–936.

    Article  PubMed  CAS  Google Scholar 

  3. Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., Zuba-Surma, E. K., Al-Mallah, M., and Dawn, B. (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis, Archives of Internal Medicine 167, 989–997.

    Article  PubMed  Google Scholar 

  4. Filho Cerruti, H., Kerkis, I., Kerkis, A., Tatsui, N. H., da Costa Neves, A., Bueno, D. F., and da Silva, M. C. (2007) Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports, Artificial Organs 31, 268–273.

    Article  PubMed  Google Scholar 

  5. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C., and Rodriguez-Montes, J. A. (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation, Diseases of the Colon and Rectum 48, 1416–1423.

    Article  PubMed  Google Scholar 

  6. Maitra, B., Szekely, E., Gjini, K., Laughlin, M. J., Dennis, J., Haynesworth, S. E., and Koc, O. N. (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation, Bone Marrow Transplantation 33, 597–604.

    Article  PubMed  CAS  Google Scholar 

  7. Karp, J. M., and Leng Teo, G. S. (2009) Mesenchymal stem cell homing: the devil is in the details, Cell Stem Cell 4, 206–216.

    Article  PubMed  CAS  Google Scholar 

  8. Phinney, D. G., and Prockop, D. J. (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views, Stem Cells (Dayton, Ohio) 25, 2896–2902.

    Google Scholar 

  9. Ruster, B., Gottig, S., Ludwig, R. J., Bistrian, R., Muller, S., Seifried, E., Gille, J., and Henschler, R. (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells, Blood 108, 3938–3944.

    Article  PubMed  Google Scholar 

  10. Sackstein, R., Merzaban, J. S., Cain, D. W., Dagia, N. M., Spencer, J. A., Lin, C. P., and Wohlgemuth, R. (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone, Nature Medicine 14, 181–187.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C. A., Melo, L. G., and Kong, D. (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance, Molecular Therapy 16, 571–579.

    Article  PubMed  CAS  Google Scholar 

  12. Sarkar, D., Vemula, P. K., Teo, G. S., Spelke, D., Karnik, R., Wee le, Y., and Karp, J. M. (2008) Chemical engineering of mesenchymal stem cells to induce a cell rolling response, Bioconjugate Chemistry 19, 2105–2109.

    Article  PubMed  CAS  Google Scholar 

  13. Yago, T., Leppanen, A., Qiu, H., Marcus, W. D., Nollert, M. U., Zhu, C., Cummings, R. D., and McEver, R. P. (2002) Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow, The Journal of Cell Biology 158, 787–799.

    Article  PubMed  CAS  Google Scholar 

  14. Wiese, G., Barthel, S. R., and Dimitroff, C. J. (2009) Analysis of physiologic E-selectin-mediated leukocyte rolling on microvascular endothelium, Journal of Visualized Experiments 11, 1009–1020.

    Google Scholar 

  15. Hong, S., Lee, D., Zhang, H., Zhang, J. Q., Resvick, J. N., Khademhosseini, A., King, M. R., Langer, R., and Karp, J. M. (2007) Covalent immobilization of p-selectin enhances cell rolling, Langmuir 23, 12261–12268.

    Article  PubMed  CAS  Google Scholar 

  16. Brunk, D. K., Goetz, D. J., and Hammer, D. A. (1996) Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system, Biophysical Journal 71, 2902–2907.

    Article  PubMed  CAS  Google Scholar 

  17. Mazo, I. B., and von Andrian, U. H. (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels, Journal of Leukocyte Biology 66, 25–32.

    PubMed  CAS  Google Scholar 

  18. Eniola, A. O., Willcox, P. J., and Hammer, D. A. (2003) Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs, Biophysical Journal 85, 2720–2731.

    Article  PubMed  CAS  Google Scholar 

  19. Rodgers, S. D., Camphausen, R. T., and Hammer, D. A. (2000) Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin, Biophysical Journal 79, 694–706.

    Article  PubMed  CAS  Google Scholar 

  20. Zou, X., Shinde Patil, V. R., Dagia, N. M., Smith, L. A., Wargo, M. J., Interliggi, K. A., Lloyd, C. M., Tees, D. F., Walcheck, B., Lawrence, M. B., and Goetz, D. J. (2005) PSGL-1 derived from human neutrophils is a high-efficiency ligand for endothelium-expressed E-selectin under flow, American Journal of Physiology 289, C415–C424.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A. T., Popovic, Z. B., Koc, O. N., and Penn, M. S. (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction, FASEB J 21, 3197–3207.

    Article  PubMed  CAS  Google Scholar 

  22. Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L. H., Kloner, R. A., and Leor, J. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution, Circulation 108, 863–868.

    Article  PubMed  Google Scholar 

  23. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M. (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats, Stroke: A Journal of Cerebral Circulation 32, 1005–1011.

    CAS  Google Scholar 

  24. Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., Muguruma, Y., Tsuboi, K., Itabashi, Y., Ikeda, Y., Ogawa, S., Okano, H., Hotta, T., Ando, K., and Fukuda, K. (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction, Blood 104, 3581–3587.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Karp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sarkar, D., Zhao, W., Gupta, A., Loh, W.L., Karnik, R., Karp, J.M. (2011). Cell Surface Engineering of Mesenchymal Stem Cells. In: Vemuri, M., Chase, L., Rao, M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology, vol 698. Humana Press. https://doi.org/10.1007/978-1-60761-999-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-999-4_35

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-998-7

  • Online ISBN: 978-1-60761-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics