Skip to main content

The Blood-Retinal Barrier: Structure and Functional Significance

  • Protocol
  • First Online:
The Blood-Brain and Other Neural Barriers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

Formation and maintenance of the blood-retinal barrier is required for proper vision and loss of this barrier contributes to the pathology of a wide number of retinal diseases. The retina is responsible for converting visible light into the electrochemical signal interpreted by the brain as vision. Multiple cell types are required for this function, which are organized into eight distinct cell layers. These neural and glial cells gain metabolic support from a unique vascular structure that provides the necessary nutrients while minimizing interference with light sensing. In addition to the vascular contribution, the retina also possesses an epithelial barrier, the retinal pigment epithelium, which is located at the posterior of the eye and controls exchange of nutrients with the choroidal vessels. Together the vascular and epithelial components of the blood-retinal barrier maintain the specialized environment of the neural retina. Both the vascular endothelium and pigment epithelium possess a well-developed junctional complex that includes both adherens and tight junctions conferring a high degree of control of solute and fluid permeability. Understanding induction and regulation of the blood-retinal barrier will allow the development of therapies aimed at restoring the barrier when compromised in disease or allowing the specific transport of therapies across this barrier when needed. This chapter will highlight the anatomical structure of the blood-retinal barrier and explore the molecular structure of the tight junctions that provide the unique barrier properties of the blood-­retinal barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122

    Article  PubMed  CAS  Google Scholar 

  2. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  3. Gardner TW, Antonetti DA, Barber AJ et al (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47 Suppl 2:S253–262

    Article  PubMed  Google Scholar 

  4. Erickson KK, Sundstrom JM, Antonetti DA (2007) Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10:103–117

    Article  PubMed  Google Scholar 

  5. Pournaras CJ, Rungger-Brandle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330

    Article  PubMed  CAS  Google Scholar 

  6. Gariano RF, Iruela-Arispe ML, Hendrickson AE (1994) Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci 35: 3442–3455

    PubMed  CAS  Google Scholar 

  7. Caldwell RB, Bartoli M, Behzadian MA et al (2003) Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 19:442–455

    Article  PubMed  CAS  Google Scholar 

  8. Fenstermacher J, Gross P, Sposito N et al (1988) Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci 529:21–30

    Article  PubMed  CAS  Google Scholar 

  9. Hori S, Ohtsuki S, Hosoya K et al (2004) A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 89:503–513

    Article  PubMed  CAS  Google Scholar 

  10. Dohgu S, Takata F, Yamauchi A et al (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215

    Article  PubMed  CAS  Google Scholar 

  11. Hellstrom M, Gerhardt H, Kalen M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  CAS  Google Scholar 

  12. Lindahl P, Johansson BR, Leveen P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  13. Wolburg H, Neuhaus J, Kniesel U et al (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107 (Pt 5):1347–1357

    PubMed  CAS  Google Scholar 

  14. Antonetti DA, Wolpert EB, DeMaio L et al (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80:667–677

    Article  PubMed  CAS  Google Scholar 

  15. Felinski EA, Antonetti DA (2005) Glucocorticoid regulation of endothelial cell tight junction gene expression: novel treatments for diabetic retinopathy. Curr Eye Res 30:949–957

    Article  PubMed  CAS  Google Scholar 

  16. Cunha-Vaz JG, Shakib M, Ashton N (1966) Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol 50:441–453

    Article  PubMed  CAS  Google Scholar 

  17. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  PubMed  CAS  Google Scholar 

  18. van Meer G, Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. Embo J 5:1455–1464

    PubMed  Google Scholar 

  19. Tornquist P, Alm A, Bill A (1990) Permeability of ocular vessels and transport across the blood-retinal-barrier. Eye 4 (Pt 2):303–309

    PubMed  Google Scholar 

  20. Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57:815–855

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki A, Ishiyama C, Hashiba K et al (2002) aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 115:3565–3573

    Article  PubMed  CAS  Google Scholar 

  22. Fukuhara A, Irie K, Nakanishi H et al (2002) Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 21:7642–7655

    Article  PubMed  CAS  Google Scholar 

  23. Fukuhara A, Irie K, Yamada A et al (2002) Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 7:1059–1072

    Article  PubMed  CAS  Google Scholar 

  24. Choi YK, Kim JH, Kim WJ et al (2007) AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J Neurosci 27:4472–4481

    Article  PubMed  CAS  Google Scholar 

  25. Hirase T, Staddon JM, Saitou M et al (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110 (Pt 14):1603–1613

    PubMed  CAS  Google Scholar 

  26. Dermietzel R, Krause D (1991) Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int Rev Cytol 127:57–109

    Article  PubMed  CAS  Google Scholar 

  27. Stewart PA, Hayakawa K (1994) Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Brain Res Dev Brain Res 78:25–34

    Article  PubMed  CAS  Google Scholar 

  28. Rizzolo LJ (1997) Polarity and the development of the outer blood-retinal barrier. Histol Histopathol 12:1057–1067

    PubMed  CAS  Google Scholar 

  29. Williams CD, Rizzolo LJ (1997) Remodeling of junctional complexes during the development of the outer blood-retinal barrier. Anat Rec 249:380–388

    Article  PubMed  CAS  Google Scholar 

  30. Rubin LL, Staddon JM (1999) The cell ­biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  31. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  32. Burke JM (2008) Epithelial phenotype and the RPE: is the answer blowing in the Wnt? Prog Retin Eye Res 27:579–595

    Article  PubMed  CAS  Google Scholar 

  33. Marmorstein AD, Cross HE, Peachey NS (2009) Functional roles of bestrophins in ocular epithelia. Prog Retin Eye Res 28(3):206–226

    Article  PubMed  CAS  Google Scholar 

  34. Dryja TP, O’Neil-Dryja M, Pawelek JM et al (1978) Demonstration of tyrosinase in the adult bovine uveal tract and retinal pigment epithelium. Invest Ophthalmol Vis Sci 17:511–514

    PubMed  CAS  Google Scholar 

  35. Fanning AS, Little BP, Rahner C et al (2007) The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell 18:721–731

    Article  PubMed  CAS  Google Scholar 

  36. Staehelin LA (1974) Structure and function of intercellular junctions. Int Rev Cytol 39:191–283

    Article  PubMed  CAS  Google Scholar 

  37. Chiba H, Osanai M, Murata M et al (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600

    Article  PubMed  CAS  Google Scholar 

  38. Ruffer C, Gerke V (2004) The C-terminal cytoplasmic tail of claudins 1 and 5 but not its PDZ-binding motif is required for apical localization at epithelial and endothelial tight junctions. Eur J Cell Biol 83:135–144

    Article  PubMed  Google Scholar 

  39. Arabzadeh A, Troy TC, Turksen K (2006) Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol Cell Biol 26:5876–5887

    Article  PubMed  CAS  Google Scholar 

  40. Morita K, Furuse M, Fujimoto K et al (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  PubMed  CAS  Google Scholar 

  41. Angelow S, Ahlstrom R, Yu AS (2008) Biology of claudins. Am J Physiol Renal Physiol 295:F867–876

    Article  PubMed  CAS  Google Scholar 

  42. Krause G, Winkler L, Mueller SL et al (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    PubMed  CAS  Google Scholar 

  43. Rahner C, Fukuhara M, Peng S et al (2004) The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. J Cell Sci 117:3307–3318

    Article  PubMed  CAS  Google Scholar 

  44. Morita K, Sasaki H, Furuse M et al (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  45. Nitta T, Hata M, Gotoh S et al (2003) ­Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  46. Koto T, Takubo K, Ishida S et al (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397

    Article  PubMed  CAS  Google Scholar 

  47. Ando-Akatsuka Y, Saitou M, Hirase T et al (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47

    Article  PubMed  CAS  Google Scholar 

  48. Persidsky Y, Heilman D, Haorah J et al (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 107:4770–4780

    Article  PubMed  CAS  Google Scholar 

  49. Elias BC, Suzuki T, Seth A et al (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284:1559–1569

    Article  PubMed  CAS  Google Scholar 

  50. Suzuki T, Elias BC, Seth A et al (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A 106:61–66

    Article  PubMed  Google Scholar 

  51. Sundstrom JM, Tash BR, Murakami T et al (2009) Identification and analysis of occludin phosphosites: a combined mass spectrometry and bioinformatics approach. J Proteome Res 8(2):808–817

    Article  PubMed  CAS  Google Scholar 

  52. Phillips BE, Cancel L, Tarbell JM et al (2008) Occludin independently regulates permeability under hydrostatic pressure and cell division in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 49:2568–2576

    Article  PubMed  Google Scholar 

  53. Saitou M, Furuse M, Sasaki H et al (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    PubMed  CAS  Google Scholar 

  54. Yu AS, McCarthy KM, Francis SA et al (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288:C1231–1241

    Article  PubMed  CAS  Google Scholar 

  55. Ebnet K, Suzuki A, Horikoshi Y et al (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). Embo J 20:3738–3748

    Article  PubMed  CAS  Google Scholar 

  56. Itoh M, Sasaki H, Furuse M et al (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–497

    Article  PubMed  CAS  Google Scholar 

  57. Ebnet K, Aurrand-Lions M, Kuhn A et al (2003) The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 116:3879–3891

    Article  PubMed  CAS  Google Scholar 

  58. Luo Y, Fukuhara M, Weitzman M et al (2006) Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Res 1110:55–63

    Article  PubMed  CAS  Google Scholar 

  59. Daniele LL, Adams RH, Durante DE et al (2007) Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol 505:166–176

    Article  PubMed  CAS  Google Scholar 

  60. Haskins J, Gu L, Wittchen ES et al (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141:199–208

    Article  PubMed  CAS  Google Scholar 

  61. Stevenson BR, Siliciano JD, Mooseker MS et al (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766

    Article  PubMed  CAS  Google Scholar 

  62. Jesaitis LA, Goodenough DA (1994) Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol 124:949–961

    Article  PubMed  CAS  Google Scholar 

  63. Gumbiner B, Lowenkopf T, Apatira D (1991) Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A 88:3460–3464

    Article  PubMed  CAS  Google Scholar 

  64. Balda MS, Gonzalez-Mariscal L, Matter K et al (1993) Assembly of the tight junction: the role of diacylglycerol. J Cell Biol 123:293–302

    Article  PubMed  CAS  Google Scholar 

  65. Itoh M, Morita K, Tsukita S (1999) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 274:5981–5986

    Article  PubMed  CAS  Google Scholar 

  66. Willott E, Balda MS, Heintzelman M et al (1992) Localization and differential expression of two isoforms of the tight junction protein ZO-1. Am J Physiol 262:C1119–1124

    PubMed  CAS  Google Scholar 

  67. Beatch M, Jesaitis LA, Gallin WJ et al (1996) The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region. J Biol Chem 271:25723–25726

    Article  PubMed  CAS  Google Scholar 

  68. Woods DF, Bryant PJ (1993) ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 44:85–89

    Article  PubMed  CAS  Google Scholar 

  69. Aartsen WM, Kantardzhieva A, Klooster J et al (2006) Mpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse. Hum Mol Genet 15:1291–1302

    Article  PubMed  CAS  Google Scholar 

  70. Kumar R, Shieh BH (2001) The second PDZ domain of INAD is a type I domain involved in binding to eye protein kinase C. Mutational analysis and naturally occurring variants. J Biol Chem 276:24971–24977

    Article  PubMed  CAS  Google Scholar 

  71. Lemmers C, Medina E, Delgrossi MH et al (2002) hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 277:25408–25415

    Article  PubMed  CAS  Google Scholar 

  72. Umeda K, Matsui T, Nakayama M et al (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279:44785–44794

    Article  PubMed  CAS  Google Scholar 

  73. McNeil E, Capaldo CT, Macara IG (2006) Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine ­kidney epithelial cells. Mol Biol Cell 17: 1922–1932

    Article  PubMed  CAS  Google Scholar 

  74. Hernandez S, Chavez Munguia B, Gonzalez-Mariscal L (2007) ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture. Exp Cell Res 313: 1533–1547

    Article  PubMed  CAS  Google Scholar 

  75. Umeda K, Ikenouchi J, Katahira-Tayama S et al (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    Article  PubMed  CAS  Google Scholar 

  76. Katsuno T, Umeda K, Matsui T et al (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19: 2465–2475

    Article  PubMed  CAS  Google Scholar 

  77. Xu J, Kausalya PJ, Phua DC et al (2008) Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol Cell Biol 28:1669–1678

    Article  PubMed  CAS  Google Scholar 

  78. Antonetti DA, Barber AJ, Hollinger LA et al (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467

    Article  PubMed  CAS  Google Scholar 

  79. Harhaj NS, Felinski EA, Wolpert EB et al (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47:5106–5115

    Article  PubMed  Google Scholar 

  80. Barber AJ, Antonetti DA (2003) Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 44:5410–5416

    Article  PubMed  Google Scholar 

  81. Antonetti DA, Barber AJ, Khin S et al (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47:1953–1959

    Article  PubMed  CAS  Google Scholar 

  82. Hofman P, Blaauwgeers HG, Tolentino MJ et al (2000) VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Curr Eye Res 21:637–645

    PubMed  CAS  Google Scholar 

  83. Feng Y, Venema VJ, Venema RC et al (1999) VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci 40:157–167

    PubMed  CAS  Google Scholar 

  84. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  PubMed  CAS  Google Scholar 

  85. Tout S, Chan-Ling T, Hollander H et al (1993) The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience 55:291–301

    Article  PubMed  CAS  Google Scholar 

  86. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  87. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  88. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    Article  PubMed  CAS  Google Scholar 

  89. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  90. Ikeda E, Achen MG, Breier G et al (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270:19761–19766

    Article  PubMed  CAS  Google Scholar 

  91. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  92. Asahara T, Chen D, Takahashi T et al (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  93. Thurston G, Rudge JS, Ioffe E et al (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  PubMed  CAS  Google Scholar 

  94. Romero IA, Radewicz K, Jubin E et al (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344: 112–116

    Article  PubMed  CAS  Google Scholar 

  95. Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80:249–258

    Article  PubMed  CAS  Google Scholar 

  96. Felinski EA, Cox AE, Phillips BE et al (2008) Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element. Exp Eye Res 86:867–878

    Article  PubMed  CAS  Google Scholar 

  97. Liebner S, Corada M, Bangsow T et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417

    Article  PubMed  CAS  Google Scholar 

  98. Moon RT (2005) Wnt/beta-catenin pathway. Sci STKE 2005:cm1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Antonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Runkle, E.A., Antonetti, D.A. (2011). The Blood-Retinal Barrier: Structure and Functional Significance. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics