Skip to main content

Acute Lymphocytic Leukemia – Clinical Features and Making the Diagnosis

  • Chapter
  • First Online:
Adult Acute Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

Abstract

The clinical presentation of acute lymphocytic leukemia (ALL) may range from insidious nonspecific symptoms to severe acute life-threatening manifestations, reflecting the extent of bone marrow involvement and degree of extramedullary spread (Table 2.1). In younger patients anemia-induced fatigue may be the only presenting feature. Dyspnea, angina, dizziness, and lethargy may reflect the degree of anemia in older patients presenting with ALL. Approximately half of all patients may present with fever attributable to the pyrogenic cytokines, such as IL-1, IL-6, TNF, released from the leukemic cells, infection, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarus, H. M., et al. (2006). Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: Results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood, 108(2), 465–472.

    Article  PubMed  CAS  Google Scholar 

  2. Reman, O., et al. (2008). Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: Results from the GET-LALA group. Leukemia Research, 32(11), 1741–1750.

    Article  PubMed  Google Scholar 

  3. Larson, R. A., et al. (1995). A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: Cancer and leukemia group B study 8811. Blood, 85(8), 2025–2037.

    PubMed  CAS  Google Scholar 

  4. Kantarjian, H. M., et al. (2000). Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. Journal of Clinical Oncology, 18(3), 547–561.

    PubMed  CAS  Google Scholar 

  5. Cortes, J., et al. (1995). The value of high-dose systemic chemotherapy and intrathecal therapy for central nervous system prophylaxis in different risk groups of adult acute lymphoblastic leukemia. Blood, 86(6), 2091–2097.

    PubMed  CAS  Google Scholar 

  6. Petersdorf, S. H., et al. (2001). Comparison of the L10M consolidation regimen to an alternative regimen including escalating methotrexate/l-asparaginase for adult acute lymphoblastic leukemia: A Southwest Oncology Group Study. Leukemia, 15(2), 208–216.

    Article  PubMed  CAS  Google Scholar 

  7. Schattner, A., et al. (2001). Facial diplegia as the presenting manifestation of acute lymphoblastic leukemia. The Mount Sinai Journal of Medicine, 68(6), 406–409.

    CAS  Google Scholar 

  8. Mayo, G. L., Carter, J. E., & McKinnon, S. J. (2002). Bilateral optic disk edema and blindness as initial presentation of acute lymphocytic leukemia. American Journal of Ophthalmology, 134(1), 141–142.

    Article  PubMed  Google Scholar 

  9. Pui, C. H. (2006). Central nervous system disease in acute lymphoblastic leukemia: Prophylaxis and treatment. Hematology American Society of Hematology. Education Program, 2006, 142–146.

    Article  Google Scholar 

  10. Beslac-Bumbasirevic, L., et al. (1996). Neuroleukemia in adults. Srpski Arhiv za Celokupno Lekarstvo, 124(3–4), 82–86.

    PubMed  Google Scholar 

  11. Kay, H. E. (1983). Testicular infiltration in acute lymphoblastic leukaemia. British Journal Haematology, 53(4), 537–542.

    Article  CAS  Google Scholar 

  12. Storti, S., et al. (1988). Emergency abdominal surgery in patients with acute leukemia and lymphoma. The Italian Journal of Surgical Sciences, 18(4), 361–363.

    PubMed  CAS  Google Scholar 

  13. Ferrara, F., et al. (1998). Spontaneous splenic rupture in a patient with acute lymphoblastic leukemia of Burkitt type. Leukaemia & Lymphoma, 29(5–6), 613–616.

    Article  CAS  Google Scholar 

  14. Choo-Kang, L. R., et al. (1999). Cerebral edema and priapism in an adolescent with acute lymphoblastic leukemia. Pediatric Emergency Care, 15(2), 110–112.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, H. R., et al. (2006). Arthritis preceding acute biphenotypic leukemia. Clinical Rheumatology, 25(3), 380–381.

    Article  PubMed  CAS  Google Scholar 

  16. Gur, H., et al. (1999). Rheumatic manifestations preceding adult acute leukemia: Characteristics and implication in course and prognosis. Acta Haematologica, 101(1), 1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Guven, G. S., et al. (2005). Knee arthritis as a rare inaugural manifestation of adult leukemia. Rheumatology International, 25(4), 317–318.

    Article  PubMed  Google Scholar 

  18. Sinigaglia, R., et al. (2008). Musculoskeletal manifestations in pediatric acute leukemia. Journal of Pediatric Orthopedics, 28(1), 20–28.

    Article  PubMed  Google Scholar 

  19. Ali, R., et al. (2006). Leukaemia cutis in T-cell acute lymphoblastic leukaemia. Cytopathology, 17(3), 158–161.

    Article  PubMed  CAS  Google Scholar 

  20. Porcu, P., et al. (2000). Hyperleukocytic leukemias and leukostasis: A review of pathophysiology, clinical presentation and management. Leukaemia & Lymphoma, 39(1–2), 1–18.

    Article  CAS  Google Scholar 

  21. Maurer, H. S., et al. (1988). The effect of initial management of hyperleukocytosis on early complications and outcome of children with acute lymphoblastic leukemia. Journal of Clinical Oncology, 6(9), 1425–1432.

    PubMed  CAS  Google Scholar 

  22. Rosenbluth, M. J., Lam, W. A., & Fletcher, D. A. (2006). Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophysical Journal, 90(8), 2994–3003.

    Article  PubMed  CAS  Google Scholar 

  23. Strauss, R. A., et al. (1985). Acute cytoreduction techniques in the early treatment of hyperleukocytosis associated with childhood hematologic malignancies. Medical and Pediatric Oncology, 13(6), 346–351.

    Article  PubMed  CAS  Google Scholar 

  24. Sarris, A. H., et al. (1992). High incidence of disseminated intravascular coagulation during remission induction of adult patients with acute lymphoblastic leukemia. Blood, 79(5), 1305–1310.

    PubMed  CAS  Google Scholar 

  25. Solano, C., et al. (1992). Acute lymphoblastic leukemia: Hypofibrinogenemia with a low incidence of clinical complications is often found during induction remission therapy. Blood, 80(5), 1366–1368.

    PubMed  CAS  Google Scholar 

  26. Higuchi, T., et al. (1998). Disseminated intravascular coagulation in acute lymphoblastic leukemia at presentation and in early phase of remission induction therapy. Annals of Hematology, 76(6), 263–269.

    Article  PubMed  CAS  Google Scholar 

  27. O’Regan, S., et al. (1977). Electrolyte and acid-base disturbances in the management of leukemia. Blood, 49(3), 345–353.

    PubMed  Google Scholar 

  28. Jeha, S. (2001). Tumor lysis syndrome. Seminars in Hematology, 38(4 Suppl 10), 4–8.

    Article  PubMed  CAS  Google Scholar 

  29. Fukasawa, H., et al. (2001). Hypercalcemia in a patient with B-cell acute lymphoblastic leukemia: A role of proinflammatory cytokine. The American Journal of the Medical Sciences, 322(2), 109–112.

    Article  PubMed  CAS  Google Scholar 

  30. Schneider, T., et al. (2001). Life threatening hypercalcemia in a young man with ALL. Deutsche Medizinische Wochenschrift, 126(1–2), 7–11.

    Article  PubMed  CAS  Google Scholar 

  31. Lankisch, P., et al. (2004). Hypercalcemia with nephrocalcinosis and impaired renal function due to increased parathyroid hormone secretion at onset of childhood acute lymphoblastic leukemia. Leukaemia & Lymphoma, 45(8), 1695–1697.

    Article  Google Scholar 

  32. Esbrit, P. (2001). Hypercalcemia of malignancy – new insights into an old syndrome. Clinica y Laboratorio, 47(1–2), 67–71.

    CAS  Google Scholar 

  33. Tan, A. W., et al. (2004). Extensive calcinosis cutis in relapsed acute lymphoblastic leukaemia. Annals of the Academy of Medicine, Singapore, 33(1), 107–109.

    PubMed  CAS  Google Scholar 

  34. Sillos, E. M., et al. (2001). Lactic acidosis: A metabolic complication of hematologic malignancies: Case report and review of the literature. Cancer, 92(9), 2237–2246.

    Article  PubMed  CAS  Google Scholar 

  35. Mazurek, S., Boschek, C. B., & Eigenbrodt, E. (1997). The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. Journal of Bioenergetics and Biomembranes, 29(4), 315–330.

    Article  PubMed  CAS  Google Scholar 

  36. Mathupala, S. P., Rempel, A., & Pedersen, P. L. (1997). Aberrant glycolytic metabolism of cancer cells: A remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. Journal of Bioenergetics and Biomembranes, 29(4), 339–343.

    Article  PubMed  CAS  Google Scholar 

  37. Elmlinger, M. W., et al. (1996). Insulin-like growth factor binding protein 2 is differentially expressed in leukaemic B- and T-cell lines. Growth Regulation, 6(3), 152–157.

    PubMed  CAS  Google Scholar 

  38. Cohick, W. S., & Clemmons, D. R. (1993). The insulin-like growth factors. Annual Review of Physiology, 55, 131–153.

    Article  PubMed  CAS  Google Scholar 

  39. Werner, H., & LeRoith, D. (1996). The role of the insulin-like growth factor system in human cancer. Advances in Cancer Research, 68, 183–223.

    Article  PubMed  CAS  Google Scholar 

  40. Burger, B., et al. (2003). Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: Significance of low leukocyte counts with blasts or traumatic lumbar puncture. Journal of Clinical Oncology, 21(2), 184–188.

    Article  PubMed  Google Scholar 

  41. Gilchrist, G. S., et al. (1994). Low numbers of CSF blasts at diagnosis do not predict for the development of CNS leukemia in children with intermediate-risk acute lymphoblastic leukemia: A Childrens Cancer Group report. Journal of Clinical Oncology, 12(12), 2594–2600.

    PubMed  CAS  Google Scholar 

  42. Pui, C. H., et al. (2004). Improved outcome for children with acute lymphoblastic leukemia: Results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood, 104(9), 2690–2696.

    Article  PubMed  CAS  Google Scholar 

  43. Gajjar, A., et al. (2000). Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood, 96(10), 3381–3384.

    PubMed  CAS  Google Scholar 

  44. Swerdlow, S., Campo, E., Harris, N. L., & Jaffe, E. S. (2008). WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon, France: IARC Press.

    Google Scholar 

  45. Al Khabori, M., et al. (2008). Adult precursor T-lymphoblastic leukemia/lymphoma with myeloid-associated antigen expression is associated with a lower complete remission rate following induction chemotherapy. Acta Haematologica, 120(1), 5–10.

    Article  PubMed  Google Scholar 

  46. Pui, C. H., Robison, L. L., & Look, A. T. (2008). Acute lymphoblastic leukaemia. Lancet, 371(9617), 1030–1043.

    Article  PubMed  CAS  Google Scholar 

  47. Faderl, S., et al. (1998). Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood, 91(11), 3995–4019.

    PubMed  CAS  Google Scholar 

  48. Pullarkat, V., et al. (2008). Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: Results of Southwest Oncology Group 9400 study. Blood, 111(5), 2563–2572.

    Article  PubMed  CAS  Google Scholar 

  49. Moorman, A. V., et al. (2007). Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood, 109(8), 3189–3197.

    Article  PubMed  CAS  Google Scholar 

  50. Mancini, M., et al. (2005). A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): Analysis of the GIMEMA 0496 protocol. Blood, 105(9), 3434–3441.

    Article  PubMed  CAS  Google Scholar 

  51. François, S., Delabesse, E., Baranger, L., Dautel, M., Foussard, C., Boasson, M., et al. (1998). Deregulated expression of the TAL1 gene by t(1;5)(p32;31) in patient with T-cell acute lymphoblastic leukemia. Genes, Chromosomes & Cancer, 23(1), 36–43.

    Article  Google Scholar 

  52. van der Burg, M., et al. (2002). A single split-signal FISH probe set allows detection of TAL1 translocations as well as SIL-TAL1 fusion genes in a single test. Leukemia, 16(4), 755–761.

    Article  PubMed  Google Scholar 

  53. Curry, J. D., & Smith, M. T. (2003). Measurement of SIL-TAL1 fusion gene transcripts associated with human T-cell lymphocytic leukemia by real-time reverse transcriptase-PCR. Leukemia Research, 27(7), 575–582.

    Article  PubMed  CAS  Google Scholar 

  54. Brassesco, M. S., et al. (2009). Cytogenetic and molecular analysis of MLL rearrangements in acute lymphoblastic leukaemia survivors. Mutagenesis, 24(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  55. Bergeron, J., et al. (2007). Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood, 110(7), 2324–2330.

    Article  PubMed  CAS  Google Scholar 

  56. Ferrando, A. A., et al. (2004). Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet, 363(9408), 535–536.

    Article  PubMed  CAS  Google Scholar 

  57. Baak, U., et al. (2008). Thymic adult T-cell acute lymphoblastic leukemia stratified in standard- and high-risk group by aberrant HOX11L2 expression: Experience of the German multicenter ALL study group. Leukemia, 22(6), 1154–1160.

    Article  PubMed  CAS  Google Scholar 

  58. Palomero, T., & Ferrando, A. (2008). Oncogenic NOTCH1 control of MYC and PI3K: Challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. Clinical Cancer Research, 14(17), 5314–5317.

    Article  PubMed  CAS  Google Scholar 

  59. Han, X., & Bueso-Ramos, C. E. (2007). Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. American Journal of Clinical Pathology, 127(4), 528–544.

    Article  PubMed  CAS  Google Scholar 

  60. Brown, L., et al. (1990). Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. The EMBO Journal, 9(10), 3343–3351.

    PubMed  CAS  Google Scholar 

  61. Szczepanski, T., et al. (1999). Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood, 93(12), 4079–4085.

    PubMed  CAS  Google Scholar 

  62. van der Velden, V. H., et al. (2004). TCRB gene rearrangements in childhood and adult precursor-B-ALL: Frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia, 18(12), 1971–1980.

    Article  PubMed  CAS  Google Scholar 

  63. Graux, C., et al. (2006). Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: From thymocyte to lymphoblast. Leukemia, 20(9), 1496–1510.

    Article  PubMed  CAS  Google Scholar 

  64. Weng, A. P., et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes & Development, 20(15), 2096–2109.

    Article  CAS  Google Scholar 

  65. Zhu, Y. M., et al. (2006). NOTCH1 mutations in T-cell acute lymphoblastic leukemia: Prognostic significance and implication in multifactorial leukemogenesis. Clinical Cancer Research, 12(10), 3043–3049.

    Article  PubMed  CAS  Google Scholar 

  66. Hebert, J., et al. (1994). Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood, 84(12), 4038–4044.

    PubMed  CAS  Google Scholar 

  67. Schena, M., et al. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.

    Article  PubMed  CAS  Google Scholar 

  68. Alizadeh, A. A., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503–511.

    Article  PubMed  CAS  Google Scholar 

  69. Staudt, L. M. (2003). Molecular diagnosis of the hematologic cancers. The New England Journal of Medicine, 348(18), 1777–1785.

    Article  PubMed  CAS  Google Scholar 

  70. Armstrong, S. A., et al. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  71. Yeoh, E. J., et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1(2), 133–143.

    Article  PubMed  CAS  Google Scholar 

  72. Ross, M. E., et al. (2004). Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 104(12), 3679–3687.

    Article  PubMed  CAS  Google Scholar 

  73. van Delft, F. W., et al. (2005). Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. British Journal Haematology, 130(1), 26–35.

    Article  CAS  Google Scholar 

  74. Mi, S., et al. (2007). MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19971–19976.

    Article  PubMed  CAS  Google Scholar 

  75. Kawamata, N., et al. (2008). Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood, 111(2), 776–784.

    Article  PubMed  CAS  Google Scholar 

  76. Tissing, W. J., et al. (2007). Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood, 109(9), 3929–3935.

    Article  PubMed  CAS  Google Scholar 

  77. Cheok, M. H., et al. (2003). Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nature Genetics, 34(1), 85–90.

    Article  PubMed  CAS  Google Scholar 

  78. Holleman, A., et al. (2004). Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. The New England Journal of Medicine, 351(6), 533–542.

    Article  PubMed  CAS  Google Scholar 

  79. de Haas, V., et al. (2000). Accurate quantification of minimal residual disease at day 15, by real-time quantitative polymerase chain reaction identifies also patients with B-precursor acute lymphoblastic leukemia at high risk for relapse. Blood, 96(4), 1619–1620.

    PubMed  Google Scholar 

  80. Malec, M., et al. (2001). Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia, 15(5), 716–727.

    Article  PubMed  CAS  Google Scholar 

  81. Foroni, L., & Hoffbrand, A. V. (2002). Molecular analysis of minimal residual disease in adult acute lymphoblastic leukaemia. Best Practice & Research. Clinical Haematology, 15(1), 71–90.

    Article  CAS  Google Scholar 

  82. Mortuza, F. Y., et al. (2002). Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. Journal of Clinical Oncology, 20(4), 1094–1104.

    Article  PubMed  Google Scholar 

  83. Bruggemann, M., et al. (2006). Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood, 107(3), 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  84. Raff, T., et al. (2007). Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials. Blood, 109(3), 910–915.

    Article  PubMed  CAS  Google Scholar 

  85. Coustan-Smith, E., et al. (2002). Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 100(1), 52–58.

    Article  PubMed  CAS  Google Scholar 

  86. Krampera, M., et al. (2003). Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. British Journal Haematology, 120(1), 74–79.

    Article  Google Scholar 

  87. Vidriales, M. B., Orfao, A., & San-Miguel, J. F. (2003). Immunologic monitoring in adults with acute lymphoblastic leukemia. Current Oncology Reports, 5(5), 413–418.

    Article  PubMed  Google Scholar 

  88. Jacquy, C., et al. (1997). A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. British Journal Haematology, 98(1), 140–146.

    Article  CAS  Google Scholar 

  89. van Dongen, J. J., et al. (1998). Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 352(9142), 1731–1738.

    Article  PubMed  Google Scholar 

  90. Coustan-Smith, E., et al. (1998). Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, 351(9102), 550–554.

    Article  PubMed  CAS  Google Scholar 

  91. Ciudad, J., et al. (1998). Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. Journal of Clinical Oncology, 16(12), 3774–3781.

    PubMed  CAS  Google Scholar 

  92. Biondi, A., et al. (2000). Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia, 14(11), 1939–1943.

    Article  PubMed  CAS  Google Scholar 

  93. Bjorklund, E., et al. (2003). Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia, 17(1), 138–148.

    Article  PubMed  CAS  Google Scholar 

  94. Dworzak, M. N., et al. (2002). Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood, 99(6), 1952–1958.

    Article  PubMed  CAS  Google Scholar 

  95. Nyvold, C., et al. (2002). Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood, 99(4), 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou, J., et al. (2007). Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood, 110(5), 1607–1611.

    Article  PubMed  CAS  Google Scholar 

  97. Flohr, T., et al. (2008). Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia, 22(4), 771–782.

    Article  PubMed  CAS  Google Scholar 

  98. Coustan-Smith, E., et al. (2006). A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood, 108(1), 97–102.

    Article  PubMed  CAS  Google Scholar 

  99. D’Angelo, G., Hotz, A. M., & Tooeschin, P. (2008). Acute lymphoblastic leukemia with hypereosinophilia and 9p21 deletion: Case report and review of the literature. Laboratory Hematology, 14(1), 7–9.

    Article  PubMed  Google Scholar 

  100. Wilson, F., & Tefferi, A. (2005). Acute lymphocytic leukemia with eosinophilia: Two case reports and a literature review. Leukaemia & Lymphoma, 46(7), 1045–1050.

    Article  Google Scholar 

  101. Cave, H., et al. (1998). Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. The New England Journal of Medicine, 339(9), 591–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frankfurt, O., Petersen, L., Tallman, M.S. (2011). Acute Lymphocytic Leukemia – Clinical Features and Making the Diagnosis. In: Advani, A., Lazarus, H. (eds) Adult Acute Lymphocytic Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-60761-707-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-707-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-706-8

  • Online ISBN: 978-1-60761-707-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics