Skip to main content

CFTR and Cystic Fibrosis: A Need for Personalized Medicine

  • Chapter
  • First Online:
Ion Channels and Transporters of Epithelia in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Cystic fibrosis (CF), a common lethal genetic disease, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene, which codes for an epithelial anion channel. Since the identification of CF as a genetic disease, patients have been treated exclusively with drugs that address the symptoms of the disease (antibiotics for airway disease, pancreatic supplements to replace digestive enzymes, and anti-inflammatories to reduce airway inflammation) rather than treating the basic defect. Nevertheless, this approach has resulted in a marked improvement in the survival of patients with CF over the last few decades, such that the median predicted survival is now around 40 years of age. Since the discovery of the gene encoding CFTR and the identification of mutations underlying the defects in CFTR function, the hunt has been on to discover drugs that would correct the basic defect in the CFTR protein. Although almost 2000 CFTR mutations have been described in patients, they mostly fall into a few broad categories of disruption. Given the disparate ways in which CFTR mutations affect the CFTR protein however, it has become apparent that a single drug regimen will not be effective in treating all patients. Thus, a patient’s genotype would have to be taken into account when deciding which drug would be appropriate to treat individual patients with CF. Individual or personalized medicine as a concept has been increasingly highlighted in recent years, yet with CF, personalized medicine is not a mere academic exercise but rather a necessity in order to effectively treat all the mutations that are found in CF patients. This chapter presents the current CFTR mutation classifications and shows how such classification is essential in the establishment of a mutation-specific targeted drug therapy for each individual with CF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, Moss RB, Pilewski JM, Rubenstein RC, Uluer AZ, Aitken ML, Freedman SD, Rose LM, Mayer-Hamblett N, Dong Q, Zha J, Stone AJ, Olson ER, Ordonez CL, Campbell PW, Ashlock MA, Ramsey BW (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363:1991–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Accurso FJ, Van Goor F, Zha J, Stone AJ, Dong Q, Ordonez CL, Rowe SM, Clancy JP, Konstan MW, Hoch HE, Heltshe SL, Ramsey BW, Campbell PW, Ashlock MA (2014) Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data. J Cyst Fibros 13:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aeffner F, Abdulrahman B, Hickman-Davis JM, Janssen PM, Amer A, Bedwell DM, Sorscher EJ, Davis IC (2013) Heterozygosity for the F508del mutation in the cystic fibrosis transmembrane conductance regulator anion channel attenuates influenza severity. J Infect Dis 208:780–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Malky G, Suri R, Sirimanna T, Dawson SJ (2014) Normal hearing in a child with the m.1555A>G mutation despite repeated exposure to aminoglycosides. Has the penetrance of this pharmacogenetic interaction been overestimated? Int J Pediatr Otorhinolaryngol 78:969–973

    Article  PubMed  Google Scholar 

  • Alonso y de los Ruyzes de Fontecha J (1606) Diez Previlegios para Mgeres Preñadas. AlcalĂ¡ de Henares, Henares, Spain, p 212

    Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118

    Article  CAS  PubMed  Google Scholar 

  • Anderson D (1938) Cystic fibrosis of the pancreas: clinical and pathological study. Am J Dis Child 56:344

    Article  Google Scholar 

  • Armstrong DK, Cunningham S, Davies JC, Alton EW (2014) Gene therapy in cystic fibrosis. BMJ 99:465–468

    Google Scholar 

  • Aznarez I, Chan EM, Zielenski J, Blencowe BJ, Tsui LC (2003) Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet 12:2031–2040

    Article  CAS  PubMed  Google Scholar 

  • Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, Norris SA, Durie PR, Drumm ML, Knowles MR, Cutting GR (2013) Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 62:3627–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42:10061–10072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boat TF, Welsh MJ, Beadudet AL, Scriver CR (1989) Cystic fibrosis. In: Scriver CR, Beadudet AL, Valle D, Sly WS (eds) The metabolic basis of inherited disease, 8th edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23:146–158

    Article  CAS  PubMed  Google Scholar 

  • Boyle MP, Bell S, Konstan M, McColley SA, Kang L, Patel N (2012) The investigational CFTR corrector, VX-809 (lumacaftor) co-administered with the oral potentiator ivacaftor improved CFTR and lung function in F508DEL homozygous patients: Phase II study results. Pediatr Pulmonol 47(Suppl 35):315

    Google Scholar 

  • Bradbury NA, Cohn JA, Venglarik CJ, Bridges RJ (1994) Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles. J Biol Chem 269:8296–8302

    CAS  PubMed  Google Scholar 

  • CF Foundation (2011) Patient Registry. Annual data report. CF Foundation, Bethesda, MD

    Google Scholar 

  • CF Genetic Analysis Consortium (1990) Worldwide survey of the DF508 mutation – report from the cystic fibrosis genetic analysis consortium. Am J Hum Genet 47:354–359

    Google Scholar 

  • Chadwick S, Browning JE, Stern M (1998) Nasal application of glycerol in DF508 cystic fibrosis patients. Thorax 53:A60

    Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Yu AM (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:793–807

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S (2001) Aberrant CFTR-dependent HCO3 - transport in mutations associated with cystic fibrosis. Nature 410:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cholon DM, Quinney NL, Fulcher ML, Esther CR Jr, Das J, Dokholyan NV, Randell SH, Boucher RC, Gentzsch M (2014) Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci Transl Med 6:246ra96

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu CS, Trapnell BC, Curristin SM, Cutting G, Crystal RG (1992) Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J Clin Invest 90:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clain J, Fritsch J, Lehmann-Che J, Bali M, Arous M, Goossens M, Edelman A, Fanen P (2001) Two mild cystic fibrosis-associated mutations result in severe cystic fibrosis when combined in cis and reveal a residue important for cystic fibrosis transmembrane conductance regulator processing and function. J Biol Chem 276:9045–9049

    Article  CAS  PubMed  Google Scholar 

  • Clancy JP, Jain M (2012) Personalized medicine in cystic fibrosis: dawning of a new era. Am J Respir Crit Care Med 186:593–597

    Article  CAS  PubMed  Google Scholar 

  • Clancy JP, Konstan MW, Rowe SM, Accurso FJ, Zeitlin PL, Hirawat S (2006) A phase II study of PTC124 in CF patients harboring premature stop mutations. North American Cystic Fibrosis Conference, A269

    Google Scholar 

  • Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, Ballmann M, Boyle MP, Bronsveld I, Campbell PW, de Boeck K, Donaldson SH, Dorkin HL, Dunitz JM, Durie PR, Jain M, Leonard A, Mccoy KS, Moss RB, Pilewski JM, Rosenbluth DB, Rubenstein RC, Schechter MS, Botfield M, Ordonez CL, Spencer-Green GT, Vernillet L, Wisseh S, Yen K, Konstan MW (2012) Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67:12–18

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Aleksandrov L, Chang XB, Hou YX, He L, Hegedus T, Gentzsch M, Aleksandrov A, Balch WE, Riordan JR (2007) Domain interdependence in the biosynthetic assembly of CFTR. J Mol Biol 365:981–994

    Article  CAS  PubMed  Google Scholar 

  • Cutting GR (2010) Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci 1214:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  • Davis PB, Drumm ML, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 1545:1229–1256

    Article  Google Scholar 

  • Davis PB, Schluchter MD, Konstan MW (2004) Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis. Pediatr Pulmonol 38:204–209

    Article  PubMed  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Bridges RJ, Pilewski J (2000) Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol 279:C461–C479

    CAS  Google Scholar 

  • Dodge JA, Lewis PA, Stanton M, Wilsher J (2007) Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur Respir J 29:522–526

    Article  CAS  PubMed  Google Scholar 

  • Donaldson SH, Pilewski J, Griese M (2013) VX-661, an investigational CFTR corrector, in combination with ivacaftor, a CFTR potentiator, in patients with CF homozygous for the F508del-CFTR mutation, interim analysis. European Cystic Fibrosis Conference, Lisbon, Portugal

    Google Scholar 

  • Dormer RL, Harris CM, Clark Z, Pereira MM, Doull IJ, Norez C, Becq F, Mcpherson MA (2005) Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 60:55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, Bebok Z, Whitsett JA, Dey CR, Colledge WH, Evans MJ, Sorscher EJ, Bedwell DM (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med 80:595–604

    Article  CAS  PubMed  Google Scholar 

  • Dugueperoux I, Bellis G, Lesure JF, Renouil M, Flodrops H, de Braekeleer M (2003) Cystic fibrosis at the Reunion Island (France): spectrum of mutations and genotype-phenotype for the Y112X mutation. J Cyst Fibros 3:185–188

    Article  CAS  Google Scholar 

  • Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304:600–602

    Article  CAS  PubMed  Google Scholar 

  • Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354:229–240

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2:240–248

    Article  CAS  PubMed  Google Scholar 

  • Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flume PA, Liou TG, Borowitz DS, Li H, Yen K, Ordonez CL, Geller DE (2012) Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest 142:718–724

    Article  PubMed  PubMed Central  Google Scholar 

  • Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA (1999) Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today 4:431–439

    Article  CAS  PubMed  Google Scholar 

  • Griesenbach U, Alton EW (2012) Progress in gene and cell therapy for cystic fibrosis lung disease. Curr Pharm Des 18:642–662

    Article  CAS  PubMed  Google Scholar 

  • Grove DE, Rosser MF, Ren HY, Naren AP, Cyr DM (2009) Mechanisms for rescue of correctable folding defects in CFTRDelta F508. Mol Biol Cell 20:4059–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb BR, Gabriel SE, Mengos A, Gentzsch M, Randell SH, Van Heeckeren AM, Knowles MR, Drumm ML, Riordan JR, Boucher RC (2006) SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis. Am J Respir Cell Mol Biol 34:355–363

    Article  CAS  PubMed  Google Scholar 

  • Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs GL (1999) C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 274:21873–21877

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Okiyoneda T, Hashimoto Y, Ueno K, Nakamura K, Yamahira K, Suhgahara T, Shuto T, Wada I, Suico MA, Kaoi H (2006) Calreticulin negatively regulates the cell surface expression of cystic fibrosis transmembrane conductance regulator. J Biol Chem 281:12841–12848

    Article  CAS  PubMed  Google Scholar 

  • He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR (2010) Restoration of domain folding and interdomain assembly by second-site supressors of the delta F508 mutation in CFTR. EMBO J 24:3103–3112

    CAS  Google Scholar 

  • Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    Article  CAS  PubMed  Google Scholar 

  • Hwang TC, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol Cell Physiol 273:C988–C998

    CAS  Google Scholar 

  • Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11:227–249

    Article  PubMed  Google Scholar 

  • Illek B, Fischer H, Santos GF, Widdicombe JH, Machen TE, Reenstra WW (1995) cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol Cell Physiol 268:C886–C893

    CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteosome, contribute to CFTR processing. Cell 83:129–135

    Article  CAS  PubMed  Google Scholar 

  • Jih KY, Hwang TC (2013) Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci U S A 110:4404–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalid O, Mense M, Fischman S, Shitrit A, Bihler H, Ben-Zeev E, Schutz N, Pedemonte N, Thomas PJ, Bridges RJ, Wetmore DR, Marantz Y, Senderowitz H (2010) Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening. J Comput Aided Mol Des 24:971–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, Nissim-Rafinia M, Blau H, Rivlin J, Aviram M, Elfring GL, Northcutt VJ, Miller LL, Kerem B, Wilschanski M (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372:719–727

    Article  CAS  PubMed  Google Scholar 

  • Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas JR, Riordan JR, Boucher RC (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane conductance regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy L, Durie P, Pencharz P, Corey M (1986) Prognostic factors associated with patient survival during nutritional rehabilitation in malnourished children and adolescents with cystic fibrosis. J Pediatr Gastroenterol 5:97–102

    Article  CAS  Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas P, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  • Lewis DF, Ito Y, Lake BG (2010) Quantitative structure-activity relationships (QSARs) for inhibitors and substrates of CYP2B enzymes: importance of compound lipophilicity in explanation of potency differences. J Enzyme Inhib Med Chem 25:679–684

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2004) Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochem Biophys Res Commun 325:580–585

    Article  CAS  PubMed  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2005) Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound. Mol Pharm 2:407–413

    Article  CAS  PubMed  Google Scholar 

  • Maquat LE (1995) When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maquat LE (2002) Nonsense-mediated mRNA decay. Curr Biol 12:R196–R197

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Mogg AE, Heywood LA, Nitschke L, Burke JF (1989) Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet 217:411–418

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998a) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC (1998b) Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest 102:1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcphail GL, Clancy JP (2013) Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis. Drugs Today (Barc) 49:253–260

    CAS  Google Scholar 

  • Mendoza JL, Thomas PJ (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J Bioenerg Biomembr 39:499–505

    Article  CAS  PubMed  Google Scholar 

  • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ (2012) Requirements for efficient correction of DF508 CFTR revealed by analyses of evolved sequences. Cell 148:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills AD, Yoo C, Butler JD, Yang B, Verkman AS, Kurth MJ (2010) Design and synthesis of a hybrid potentiator-corrector agonist of the cystic fibrosis mutant protein DeltaF508-CFTR. Bioorg Med Chem Lett 20:87–91

    Article  CAS  PubMed  Google Scholar 

  • Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48:6523–6543

    Article  CAS  PubMed  Google Scholar 

  • Phuan PW, Yang B, Knapp JM, Wood AB, Lukacs GL, Kurth MJ, Verkman AS (2011) Cyanoquinolines with independent corrector and potentiator activities restore DeltaPhe508-cystic fibrosis transmembrane conductance regulator chloride channel function in cystic fibrosis. Mol Pharm 80:683–693

    Article  CAS  Google Scholar 

  • Picciano JA, Ameen N, Grant BD, Bradbury NA (2003) Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol 285:C1009–C1018

    Article  CAS  PubMed  Google Scholar 

  • Poschet JF, Timmins GS, Taylor-Cousar JL, Ornatowski W, Fazio J, Perkett E, Wilson KR, Yu HD, de Jonge HR, Deretic V (2007) Pharmacological modulation of cGMP levels by phosphodiesterase 5 inhibitors as a therapeutic strategy for treatment of respiratory pathology in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 293:L712–L719

    Article  CAS  PubMed  Google Scholar 

  • Prayle A, Watson A, Fortnum H, Smyth A (2010) Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax 65:654–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Protasevich I, Yang Z, Wang C, Atwell S, Zhao X, Emtage S, Wetmore DR, Hunt JF, Brouillette CG (2010) Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1. Prot Sci 19:1917–1931

    Article  CAS  Google Scholar 

  • Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301:421–422

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79:S3–S22

    CAS  PubMed  Google Scholar 

  • Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey BW, Davies J, Mcelvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, Mckone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratjen F (2001) Changes in strategies for optimal antibacterial therapy in cystic fibrosis. Int J Antimicrob Agents 17:93–96

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Quinton PM (2001) Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3 - conductances. JOP 2:212–218

    CAS  PubMed  Google Scholar 

  • Ren HY, Grove DE, de la Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM (2013) VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 24:3016–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Rogan MP, Stoltz DA, Hornick DB (2011) Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 139:1480–1490

    Article  CAS  PubMed  Google Scholar 

  • Rosser MF, Grove DE, Chen L, Cyr DM (2008) Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2. Mol Biol Cell 19:4570–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe SM, Clancy JP (2009) Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development. BioDrugs 23:165–174

    Article  CAS  PubMed  Google Scholar 

  • Rowe SM, Verkman AS (2014) Cystic fibrosis transmembrane regulator correctors and potentiators. In: Riordan JR, Boucher RC, Quinton PM (eds) Cold Spring Harbor perspectives in medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Rowe SM, Miller S, Sorscher E (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  CAS  PubMed  Google Scholar 

  • Rowe SM, Accurso FJ, Clancy JP (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early phase clinical trials. Proc Am Thorac Soc 4:387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowntree RK, Harris A (2003) The phenotypic consequences of CFTR mutations. Am Hum Genet 67:471–485

    Article  CAS  Google Scholar 

  • Rubenstein RC, Zeitlin PL (1998) A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157:484–490

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 100:2457–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635–638

    Article  CAS  PubMed  Google Scholar 

  • Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, Roussel D, Fritsch J, Hanssens L, Hirawat S, Miller NL, Constantine S, Reha A, Ajayi T, Elfring GL, Miller LL (2010) Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 182:1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Serohijos AW, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci U S A 105:3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, Bache KG, Papsin B, Zerangue N, Stenmark H, Lukacs GL (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease form Cl- channels with altered pore properties. Nature 362:160–164

    Article  CAS  PubMed  Google Scholar 

  • Shoshani T, Augarten A, Gazit E, Bashan N, Yahav Y, Rivlin Y, Tal A, Seret H, Yaar L, Kerem E, Bat-Sheva K (1992) Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet 50:222–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvis MR, Picciano JA, Bertrand C, Weixel K, Bridges RJ, Bradbury NA (2003) A mutation in the cystic fibrosis transmembrane conductance regulator generates a novel internalization sequence and enhances endocytic rates. J Biol Chem 278:11554–11560

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Sonawane ND, Salinas D, Qian L, Pedemonte N, Galietta LJ, Verkman AS (2004) Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models. J Biol Chem 279:40629–40633

    Article  CAS  PubMed  Google Scholar 

  • Trujillano D, Ramos MD, GonzĂ¡lez J, Tornador C, Sotillo F, Escaramis G, Ossowski S, Armengol L, Casals T, Estivill X (2013) Next generation diagnostics of cystic fibrosis and CFTR-related disorders by targeted multiplex high-coverage resequencing of CFTR. J Med Genet 50:455–462

    Article  CAS  PubMed  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, Mccartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, Mccartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL (2014) Some gating potentiators, including VX-770, diminish DeltaF508-CFTR functional expression. Sci Transl Med 6:246ra97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269:25710–25718

    CAS  PubMed  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  CAS  PubMed  Google Scholar 

  • Weinreich F, Wood PG, Riordan JR, Nagel G (1997) Direct action of genistein on CFTR. Pflugers Arch 434:484–491

    Article  CAS  PubMed  Google Scholar 

  • Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, Wilde RG, Karp G, Takasugi J, Chen G, Jones S, Ren H, Moon YC, Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG, Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA, Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL, Spatrick P, He F, Kawana M, Feng H, Jacobson A, Peltz SW, Sweeney HL (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91

    Article  CAS  PubMed  Google Scholar 

  • Welsh M, Ramsey B (2001) Cystic fibrosis. In: Scriver C, Beaudet A, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, NY

    Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  CAS  PubMed  Google Scholar 

  • Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, Kerem B, Kerem E (2000) A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 161:860–865

    Article  CAS  PubMed  Google Scholar 

  • Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L, Kerem B, Kerem E (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Wilschanski M, Dupuis A, Ellis L, Jarvi K, Zielenski J, Tullis E, Martin S, Corey M, Tsui LC, Durie P (2006) Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med 174:787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, Urrutia A, Joubran J, Seepersaud S, Sussky K, Hoffman BJ, Van Goor F (2012) Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 11:237–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr Ashvani Singh (Principle Scientist, Abbvie) for helpful discussions and manuscript review. Work in the author's lab is funded by NIH and the Cystic Fibrosis Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Bradbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Bradbury, N.A. (2016). CFTR and Cystic Fibrosis: A Need for Personalized Medicine. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_24

Download citation

Publish with us

Policies and ethics